

Growth Welfare Innovation Productivity

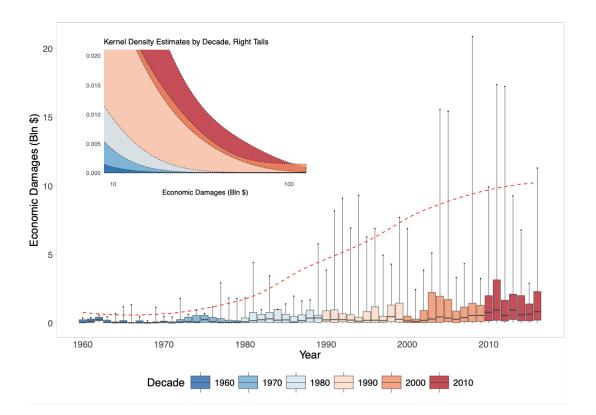
How to achieve sustainable growth

Andrea Roventini (Scuola Superiore Sant'Anna)

GROWINPRO final conference, 16 June 2022

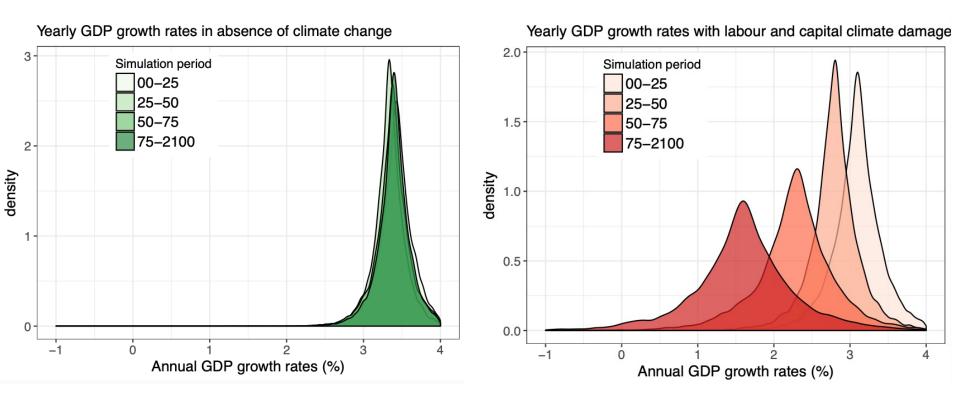
This project has received funding from the European Union Horizon 2020 Research and Innovation action under grant agreement No 822781

The climate emergency


- Last IPCC report (AR6 WGII) describes a code red for humanity
- Impacts are likely being larger than previously understood, even containing temperature at +2 degrees with respect to preindustrial average

The climate emergency

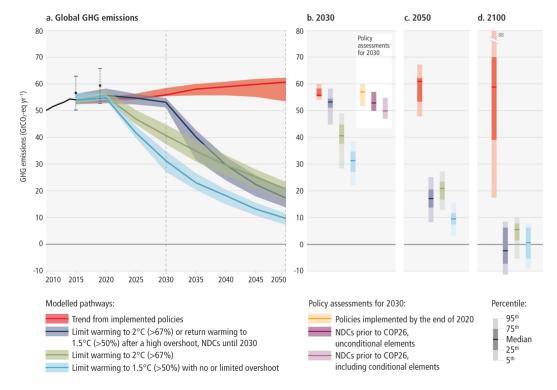
- GROWINPRO research contributed to show that the costs of climate anomalies are already on the rise
- Trends of economic damages from climate-related events are positive everywhere and more pronounced for temperate zones (e.g. EU)



Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F., & Roventini, A. (2019). Evidence for sharp increase in the economic damages of extreme natural disasters. Proceedings of the National Academy of Sciences (PNAS), 116 (43), 21450-21455.

The climate emergency

• GROWINPRO research contributed to show that impacts of unmitigated climate change can alter the properties of the growth process


Lamperti, F., Bosetti V., Roventini, A. & Tavoni, M. (2019). The public costs of climate-induced financial instability, Nature Climate Change, 9, 829-833.

The transition we need

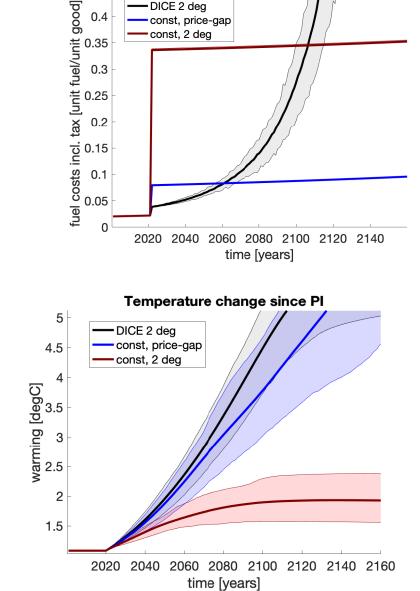
- The current set of climate policies (in red) is deeply insufficient to achieve a rapid transition allowing to limit global warming to 1.5 degrees (in light blue) or 2 degrees (in green)
- We need net zero emission by 2060 globally
- The EU aims at net zero by 2050
- Which policy mix most suitable to reach the goal?

Projected global GHG emissions from NDCs announced prior to COP26 would make it likely that warming will exceed 1.5°C and also make it harder after 2030 to limit warming to below 2°C.

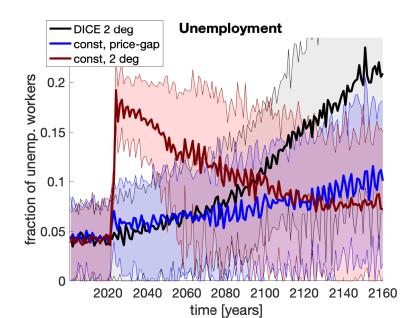
Decarbonization & sustainable growth

- Using the DSK model as a simulation laboratory, we tested policy combinations delivering a orderly transition that achieves the Paris agreement
- That is, we performed i.e. policy evaluation with respect to compliance to <2° C, transition frictions, sustainable growth

Policy instrument	Description			
Carbon Taxation				
Constant carbon tax	Sufficiently high tax to induce full energy transition by 2100			
Constant carbon tax	Sufficiently high tax to keep warming below 2°C			
Constant carbon tax	As Tax2d, with full rebate of revenues on households			
Constant carbon tax	As Tax2d, with full rebate of revenues on firms			
Increasing carbon tax	Exponentially increasing tax; same rate as the optimal policy			
0	of the DICE model constrained to below 2°C warming			
Increasing carbon tax	Exponentially increasing tax; same rate as the optimal policy			
0	of the (unconstrained) DICE model			
Increasing carbon tax	As TaxDICE2d, but with initial value corresponding to Taxcrit			
Green Subsidies				
Lump-sum transfer	Subsidy for the construction of green plants in the power sector			
Lump-sum transfer	Subsidy for green R&D in the power sector			
ommand and Control				
Mandatory regulation with fine	Ban on fossil-fuel use in the capital good sector,			
, ,	with T_{Elreg} years grace period			
Mandatory regulation with fine	Ban on the construction of brown electricity plants,			
, ,	with T_{Ban} years grace period			

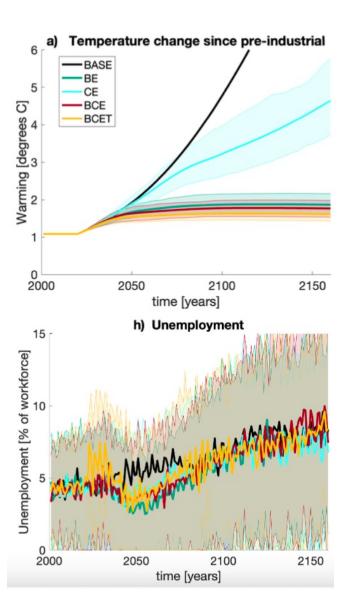

The fallacy of carbon taxation

Three carbon tax schemes:


- 1. low constant tax (const, price-gap)
- 2. high constant tax (const, 2 deg)
- 3. increasing carbon tax (DICE 2 deg)

Results"

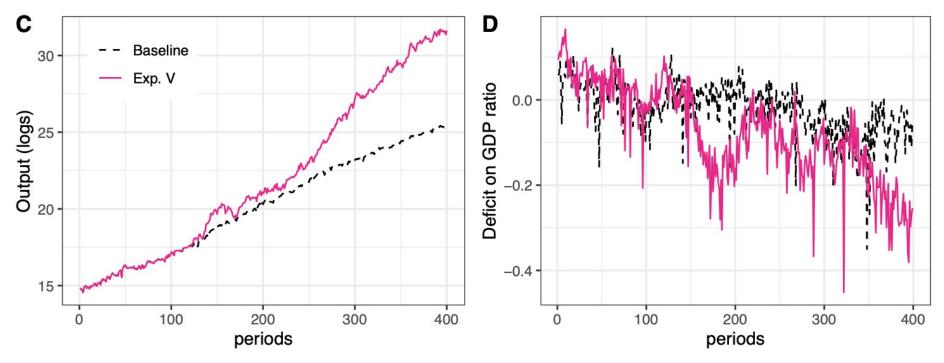
- if excessively low, ineffective
- if high enough to meet the 2 degrees, it creates an employment crisis
- increasing tax combines both downsides


cost of fuel incl. carbon tax

Direct policies

- We test combinations of command-and-control regulation and green public investment schemes
 - ban on the construction of brown energy plants (B)
 - ban on fossil fuel use in industry (E)
 - public financing of green energy plants (C)
- All policy mixes encompassing regulation (B and E) foster employment during the transition while rapidly decarbonizing
- Limited negative impact on the public budget
- Adding a "small" carbon tax (BCET) eliminate the adverse effect on public finance

Overall policy comparison


- **High carbon taxation increases business failure rates** while depressing investments, which triggers economic instability and the cost of transition
- Public investment in renewables coupled with command-and-control regulation trigger a rapid transition and foster job creation
- The limited cost of such policies can be neutralized by a mild carbon tax

	Decarbonization speed		Climate mitigation Transition frictions		Sustainable growth		Policy cost		
	Policy	Power sector	Industry sector	Peak warming	Business failures	Unemployment crises	Job creation	Long run growth	Impact on deficit
							during the transition		
Taxcrit	Carbon tax								
Tax2d	Carbon tax								
Tax2dh	Carbon tax								
Tax2df	Carbon tax								
TaxDICE2d	Carbon tax								
ET2	Regulation + tax								
RT2	Susbidy + tax								
BE	Only regulation								
CE	Regulation + subsidy								
BCE	Regulation + subsidy								
BCER	Regulation + subsidy								
BCET	Regulation + subsidy + tax								

Towards a green entrepreneurial state

- Direct innovation policies improve the growth trajectory of the economy, generating positive hysteresis and amiliorating public deficits
- If directed toward the «climate stabilization» mission, high potential to facilitate a win-win pathway

Dosi, G., Lamperti, F., Mazzucato, M., Napoletano, M., & Roventini, A. Mission-Oriented Policies and the "Entrepreneurial State" at Work: An Agent-Based Exploration. GROWINPRO WP 64/2021

The limited role of climate-finance policy

Climate impacts to capital and lab	our
------------------------------------	-----

	GDP growth	# Bank bailouts	Debt to GDP	Emissions growth
Baseline (BAU)	1 [0.024]	1 [0.035]	1 [2.09]	1 [0.014]
Risk adjustment	0.90** [†]	1.09*	1.04	0.95*
	(2.53)	(1.82)	(1.49)	(1.88)
Green credit easing	1.15* [†]	0.85** [†]	1.11* [†]	0.92** [†]
	(2.58)	(2.77)	(1.84)	(2.70)
Green Basel II	1.11* [†] (1.80)	0.94 (1.87)	0.95* (1.70)	0.93* [†] (1.88)
Policy mix	1.24** [†]	0.71**†	0.97*	0.76**†
	(3.50)	(6.04)	(1.78)	(4.02)

Lamperti, F., Bosetti V., Roventini, A., Tavoni, M. & Treibich, T. (2021). Three green financial policies to address climate risks, *Journal of Financial Stability*, 54, 100875.

- The non-trivial impact of climate-finance policy (each policy alone doesn't work)
- Combining all policies allows to achieve a win-win dynamics
- However, green finance policies are not enough and require additional mitigation measures

Conclusions

- Carbon-pricing policies are ineffective to to stay below the 2 degrees target → binding trade-off between economic growth and the decarbonization of the economy
- A mix of command-and-control regulation and subsidies for investments and R&D in green energy technologies is able to put the economy on a win-win sustainable growth pathway ...
- ... with negligible cost on the public budget if a mild carbon tax is introduced
- While macroprudential and credit policies can attenuate the impact, their scope is relatively limited and they should be coupled with more direct mitigation policies

