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Abstract

This paper explores the role of 4.0 technologies in three dimensions. First, we examine
the patterns and trends in the emergence of 4.0 technologies in Europe, differentiating
between technology groups (core, enabling and twin technologies). A novel feature is
that we specifically focus on the digital intensity of 4.0 patents, as they show strong
heterogeneity in terms of how large the share of 4.0-related technical features of the
protected technology is. Second, we study the diffusion of 4.0 technologies by means
of forward citations. Finally, we examine the impact of the adoption of AI technolo-
gies on firm performance. The novelty of our study is to examine the complementarity
between the adoption of Al and investments in complementary intangible assets, more
specifically data infrastructure. In summary, our results show that the adoption of Al
does not automatically lead to productivity gains and that only firms that invest in
internal complementary intangible assets do so, regardless of whether Al technologies
are developed internally or external Al solutions are used. However, productivity gains
are almost twice as high when internal data infrastructure investments are combined
with internal AI development compared to external Al development Firms that de-
velop Al themselves increase their productivity when they simultaneously invest in an
internal data infrastructure, but not when they combine their in-house development
strategy with external data infrastructure.
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1 Introduction

The Fourth Industrial Revolution (4IR), also known as Industry 4.0, is inspiring numer-
ous discussions in industry and politics about its various economic and organizational
consequences. Behind the buzzword Industry 4.0 lies the ongoing process of automation
and digitisation in manufacturing through modern smart technologies. 4IR represents the
fourth major wave of technological and structural change in the production of goods and
services. The first wave was characterised by mechanisation in connection with the spread
of steam and water power, the second by mass production related to electricity, and fi-
nally the third wave was by automation in the course of the spread of information and

communication technologies (ICTs).

Techno-optimists like Brynjolfsson and McAfee see the digital revolution and its applica-
tions in production still in its infant installation phase and expect major future productivity
improvements to come (see Brynjolfsson and McAfee 2011, 2014; Brynjolfsson et al. 2017).
However, unlike previous waves, the 4.0 revolution has also received much skepticism re-
garding its impact on productivity. Some authors argue that digitisation is responsible
for the current productivity slowdown coming from innovations with diminishing returns
(Gordon 2012). Other studies suggest that the overall decline in productivity growth is
the result of two trends in the adoption of digital technologies: on the one hand, frontier
firms are better equipped to invest in digital technologies than laggards and achieve posi-
tive productivity gains, especially in the ICT sector (see Andrews et al. 2016), and on the
other hand, laggards face decreasing productivity gains because the diffusion of these new
digital technologies has slowed down. Gal et al. (2019) argue that digitisation is therefore
accelerating the divergence between frontier and laggard firms. The diffusion of digital
technologies does not only involve investing in them, but also adapting the organization
of production systems and business models (Haskel and Westlake 2018), stemming from
numerous trials and errors in experimenting with the use of digital technologies (Brynjolf-
sson et al. 2017). The adoption of digital technologies might therefore be at a too early

stage to have a positive impact on productivity.

However, little is known about this diffusion process, even if empirical evidence shows
a very uneven pattern across sectors (Calvino et al. 2018). This paper aims at filling this
gap by assessing with different data sources (i.e., patent and survey data) and level of
analysis (i.e. sectorial and firm level) the pattern of generation and diffusion of different
types of 4.0 technologies as well as its impact on productivity. Section 2 starts with a
categorization of 4.0 technologies, followed by a description of our data and how we mea-
sure 4.0 technologies using the recently developed classification of industry 4.0 patents in
Europe. Section 3 examines patterns and trends in the generation of 4.0 technologies in
their entirety and differentiated by technology groups. In section 4, we study the diffusion
of 4.0 technologies. We measure diffusion by looking at European 4.0 patents and their
respective pattern of forward citations across sectors. Section 5 finally focus on the produc-

tivity impact of 4.0 technologies. More specifically, we focus on artificial intelligence (AI)



due to data constraints. But Al is considered to be the most important technology within
4.0 technologies. In addition to patent data, we use survey data from the German CIS
2018 for this analysis. This study is novel as it not only investigate the role of Al adoption
but also investigates the complementarity between Al adoption and data infrastructure

investments. Section 6 concludes.

2 Industry 4.0 Technologies

2.1 Categorization of 4.0 Technologies

The main feature of the Fourth Industrial Revolution lies in its capacity to automatize
decision-making by reducing human involvement. This includes both human-to-human and
human-to-machine interaction. The communication between physical and virtual technolo-
gies via the transmission of large amount of data aims at automatizing the decision making
regarding the production process steps. In order to do so, one can distinguish two main
types of technologies, those operating in the physical world to gather and transmit data
(core technologies) and those linked to the exploitation of data in a broad sense (enabling
technologies). Both combined create a system to digitalize the physical world of production
into virtual characteristics (see Figure 1). “Cognizing” the features of the physical world
lies at the core of digitization (Qi et al. 2019).

Figure 1: Digital Manufacturing System: Functions and Relationships Between Core and
Enabling Technologies
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Source: Own representation.

In this sense, virtual machines are considered “smart” by continuously learning about a
given production process, leading to the term “smart manufacturing”. These smart virtual
machines refer to a wide range of technologies (i.e. machine learning, artificial intelligence)
that aim at modelling a given phenomenon to monitor, simulate, predict, and validate the

different steps of the production process.

This smart production process relies on complementary technologies (e.g. physical and



virtual technologies) to achieve the data collection and treatment to be used as inputs
by smart machines. These complementary technologies can be distinguished based on
their respective purposes (data collection and management vs transmission) and physical

features.

Core technologies. They represent established ICT fields inherited from the previous
industrial revolution. Under the umbrella of core technologies, we can distinguish three
categories: hardware, software and connectivity (see Méniére et al. 2017). IT Hardware
technologies comprise physical components of computers or devices that aim at collecting
data. Examples of hardware technologies include sensors, advanced memories, processors,
adaptive displays, cameras, QR codes, and so on. The second category consists of soft-
ware infrastructure which aims at collecting data as well. Software technologies include
for example intelligent cloud storage and computing structures, adaptive databases, mo-
bile operating systems, virtualisation, Application Programming Interfaces (APIs), web
crawlers, search engines or blockchain technologies. Finally, the last category, known as
connectivity, aims at connecting the different physical components to the enabling tech-
nologies. Connectivity technologies includes network protocols for massively connected
devices, wireless technologies (WiFi, Bluetooth) or other cable transmissions (see Qi et al.
2019, for more details).

Enabling technologies. The fourth industrial revolution is additionally characterized
by enabling technologies that build upon and complement these core technologies (Mar-
tinelli et al. 2020). Enabling technologies bear a high transformative potential for the
productive system in which they are used for a variety of applications (Teece 2018), and
therefore play an important role in providing inputs for smart manufacturing systems. The
group of enabling technologies consist of a wide range of technologies that aim at improv-
ing the performance of physical entities in the physical world (Qi et al. 2019). Enabling
technologies can act in carrying a specific action (e.g. providing energy to a machine in
an intelligent way, known as power technologies), or in improving the communication be-
tween the physical components and the virtual machines. They intervene in enhancing the
connection between physical components and data generation (GPS, visual recognition to
identify pattern for example), data transmission (interface, security), or even exploitation
of data (data analytics for big data, machine learning). The specialized literature in dig-
ital technologies stresses the interdependence and complementarity between the different
components (e.g. physical and virtual representing the core and enabling technologies) (Qi
et al. 2019; Fuller et al. 2020). Besides the technological infrastructure between core and
enabling technologies, the authors also highlight the importance of having access to a large
number of standardized data (Qi et al. 2019; Fuller et al. 2020). Data storage (in cloud for
example) and data security represent also two key dimensions to foster the diffusion and
use of digital technologies in the economy (Qi et al. 2019; Fuller et al. 2020).



2.2 Data and Measurement of 4.0 Technologies

We measure the generation of industry 4.0 technologies using European patent data.
Patents have been criticized as measure for innovation as not all inventions can be patented
and not all inventions are patented even if they could since firms can use other measures
to protect their inventions. Furthermore not all inventions lead to marketable innovations.
For our research question, we have additionally take into account that the use of patents
might differ across 4.0 technologies and might lead to an underestimation of the corre-
sponding development. In this regard, we expect that some enabling technologies might
be more protected with copyrights due to the nature of the underpinning technologies (e.g.
algorithms). Nevertheless, the availability of internationally comparable data over a long
period of time and its richness in terms of technological information currently make patent
data the best proxy available to study the development of 4.0 technologies as stressed by
Martinelli et al. (2020).

In the following, we mainly focus on the development and diffusion of three main tech-
nological areas: 4.0 patents protect technologies related to the fourth industrial revolution.
Among them, we further differentiate between enabling technology patents and core tech-
nology patents. The delineation is based on the CPC (Cooperative Patent Classification)
classes of a given patent following the categorization of the European Patent Office (EPO)
(Méniére et al. 2017). A patent is considered as a 4.0 patent (also called 4IR patent)
if at least one of its CPC classes belongs to one of the 320 4IR-CPC technology field
ranges classified by EPO patent examiners as being relevant for industry 4.0 inventions.
Relevant in this context means in which CPC classes they would assign 4IR inventions
(Méniéere et al. 2017). These 4IR-CPC classes encompass the core technologies and en-
abling technologies explained in section 2.1, but also 4.0 technologies developed for final
applications in various domains of the economy, including smart manufacturing, vehicles,
infrastructure, home and personal devices for individuals. Noteworthy, core technologies,
enabling technologies and smart application domains are not mutually exclusive and some
CPC classes may belong to more than one of the three technology domains. Furthermore,
patents may have more than one CPC class that belong to different technology domains,
for instance to both enabling technologies and application domains, and they may also
have been assigned to non-4IR-CPC classes. Thus, we also assess for each 4.0 patent its
digital intensity. The digital intensity is measured by its digital score which is calculated
as the share of 4IR-CPC classes in the total number of CPC classes. A higher value of the

digital score reflects a stronger digital orientation of the patent.

Similarly, a patent is classified as an enabling technology patent if at least one of
its CPC classes falls into the list of CPC classes identified by EPO as relevant for enabling
technologies. Following the idea of the digital score, we also compute the enabling score
which measures the relative share of CPC classes related to enabling technologies. Within
the group of enabling technology patents, we follow the EPO classification and further

distinguish between the following seven enabling technology fields:



e data management which covers technologies to create value from data like diagnostic
and analytical systems for massive data, monitoring functions, planning and control

systems;

e user interfaces which enable the display and input of information like virtual reality,

augmented reality or speech recognition;

e core Al which enables machine understanding and covers for example technologies
for machine learning, neural networks, statistical and rule-based systems and Al

platforms;

e Gleo-positioning which improves the determination of the position of objects; (v)

power supply which enables intelligent power handling;
e data security which improves the security of data;

e safety which provides technological solutions for the safety of physical objects like

intelligent safety systems for theft and failure prevention and

e 3D printing which enable the realisation of physical or simulated 3D systems like 3D

printers and scanners, automated 3D design or 3D user interfaces.

Conversely, we call a patent a non-enabling technology patent if it is a 4.0 patent but

none of its CPC classes belong to CPC classes relevant for enabling technologies.

We apply the corresponding methodology to identify patents belonging to core tech-
nologies and their core score. Within the group of core technology patents, we further
distinguish between (i) hardware, (ii) software, and (iii) connectivity. Doing so, we also
study the set of patents that simultaneously belong to core and enabling technologies which
are also known as twin technologies (Fuller et al. 2020; Qi et al. 2019)). The latter are
characterized by a positive share of CPC classes in both enabling and core technology

categories.

Our analysis relies on patent application data extracted from Patstat 2020 Spring Edi-
tion. The initial sample covers all patent applications filed at the EPO with earliest filing
date between 1980 and 2017. As the last year of data is still not complete because of
the publication lag in patent data, we only consider patent applications until 2016 and
leave out the final year 2017. Overall, this makes up a sample of 3,459,374 unique patent
applications at the EPO during this time period, representing 3,228,343 unique patent
families. Our analyses are based on the patent family level. For studying the evolution of
4.0 patenting over time, we only select those patents for our analysis in section 3 that have
a positive share of CPC classes in 4.0 technologies. We end up with a final sample that is
composed of 513,880 distinct patent families (560,677 unique patent applications) related
to 4.0 technologies. This represents 15.9%. In the following we will refer to them as 4.0

patents.

Table 1 summarizes the amount of patents in each category. 64.5% of the patents

are related to core technologies and 43.7% of the patents belong to enabling technologies.



These numbers show that the technological domains are not mutually exclusive but can
overlap. At 37.6%, the lion’s share of our sample consists of patents with an orientation only
towards core technologies, followed by twin technology patents having components in core
and enabling technologies at 27.0%. 16.8% of the patents are pure enabling technologies,
while 18.5 % of the 4.0. patents have no orientation in core and enabling technologies and

can be categorized as smart application patents only.

Table 1: Composition of the Sample

Type of 4.0 patent Number % Definition

Digital patents 513,880 100.0 Share of digital CPC classes positive

Core technologies 331,691 64.5 Share of core CPC classes positive

Enabling technologies 224,644 43.7 Share of enabling CPC classes positive

Core technology only 193,163 37.6 Share of core CPC classes positive & share of enabling
CPC classses zero

Enabling technology only 86,116 16.8 Share of enabling CPC classes positive & share of core
CPC classses zero

Twin technologies 138,528 27.0 Share of core and enabling CPC classes positive

Smart applications only 96,073 18.7 Share of digital CPC classes positive but share of core

and enabling CPC classes zero

Notes: Notes: All patents applied for at the European Patent Office during 1980 and 2016 with at least
one CPC class falling into the range of CPC classes relevant for 4.0 technologies. A patent is defined as
patent family. Source: PatStat Spring 2020 edition. Own calculation.

In the next sections, we compare the respective trends regarding the generation and
diffusion of different 4.0 technologies. Doing so, we give a specific emphasis to the distinct
trends occurring among enabling and core technological fields which represent the key

technologies within the 4IR revolution.

3 Development of 4.0 Patenting over Time

3.1 Development of the Number of 4.0 Patents over Time

Figure 2 shows the trend in 4.0 and non-4.0 patenting since 1980. The left graph depicts
the absolute number of both types of patents, while the right graph provides the index
time series of the number of patents with the baseline year 2000=100. The latter allows us
to infer the growth in patenting over time. The left graph in Figure 2 shows an increasing
trend in both 4.0 and non-4.0 patenting over the last three decades, despite a small slow
down during the Great Recession in 2008. The right graph illustrates that the growth in
patenting 4.0 technologies has been much larger over this period than for other technologies.
Compared to the baseline year 2000, the annual number of 4.0 patents in 2016 has more
than doubled from 16,481 to 35,199, which corresponds to a growth rate of 114%. Non-4.0
patents have only grown by roughly 17% in the same period. The dynamics in the patenting

of 4.0 technologies is mainly due to core, enabling and twin technologies. Compared to



the baseline year 2000, the annual number of patent applications for these technologies has
grown by 148% in 2016. Much of this growth has taken place in the current decade. From
2010 to 2016, core, enabling and twin technologies have grown by 53%. In contrast, the
number of patents related only to smart applications has remained comparatively small,

with a rather modest increase of 14% since 2000.

Figure 2: Number and Growth of 4.0 and Non-4.0 Patents over Time
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Notes: Patents are measured based on patent applications. The term patent denotes a patent family.
Source: PATSTAT 2020 - spring edition, own calculation.

Figure 3 depicts the development of patenting activity over time by 4.0 technological
areas. From here onwards, we focus on 4.0 patents in core and enabling technology areas
and remove 4.0 patents purely related to smart applications as they cover different types of
technologies. To avoid double counting, we split the patents into three mutually exclusive
groups: core technology patents only, enabling technology patents only and twin technology
patents. Figure 3 (a) shows the absolute number of patents by 4.0 technology area over
time, while Figure 3 (b) depicts the corresponding annual growth rates (dotted lines) and
average annual growth rates (solid lines) for the four periods 1985-1989, 1990-1999, 2000-
2009 and 2010-2016. For all three technological areas we see a rather steady increase in
the annual number of patents applied for, except for the beginning of the nineties and the
period around the financial crisis 2008. The annual growth rate for each 4.0 technological
area is rather volatile, but it follows a similar time pattern for all three groups. While
patenting of twin technologies had the highest average annual growth rate in the decades
1990-1999 and 2000-2009, and patenting of enabling technologies had the lowest growth
rate, this pattern has changed for the most recent period 2010-2016, where the growth of
enabling technologies has overtaken that of the twin technologies. Especially since 2012,
growth in enabling technologies seem to have decoupled from growth in core technology

only and twin technologies, which have since shown a declining trend in annual growth.

3.2 Development of Digital Intensity in 4.0 Patenting over Time

Technical features of an invention are captured by the CPC classes on the patent doc-
ument. An invention might consist of both, features related to 4.0 technologies and to

non-4.0 technologies. In the previous subsection, we have equally weighted each patent,



Figure 3: Number and Growth of 4.0 Patents over Time, by Technological Area

(a) Absolute number (b) Annual growth rate
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Source: PATSTAT 2020 - spring edition, own calculation.

independently of its 4.0 digital intensity. Each patent that has at least one CPC class
belonging to a CPC class relevant for industry 4.0, has been counted as a 4.0 patent. How-
ever, the digital intensity varies substantially across 4.0 patents as Table 2 reveals. On
average, a little more than half of the CPC classes on a 4.0 patent document belong to
4.0 relevant CPC classes (53.3%), while 46.7% of the CPC classes describe non-4.0 related
technical features.! The percentiles in Table 2 furthermore show that the digital inten-
sity is rather equally distributed across all 4.0 patents. On average, 39.4% of the CPC
classes on a 4.0 patent describe core technology features, while 1 out of 4 CPC classes
(24.6%) describe a feature associated with enabling technologies. Thus, 4.0 patents show
a stronger core technology content then enabling technology content. Most frequent are
CPC classes related to hardware technology (22.4%), followed by technical feature related
to connectivity (12.8%) and analytics (12.2%).

Table 3 provides the digital intensity separately for patents classified as core technology
only, enabling technology only and twin technology. For all three groups of patents the
average digital intensity is similar, varying between 52% for core only and 56% for enabling
technology only. However, the Table also reveals substantial heterogeneity by technology
score. On the one hand, comparing twin technology patents with core technology patents
only, we observe a much stronger orientation of twin technology patents towards connec-
tivity and to a lesser extent also to hardware, while core technology only patents score
higher on software. On the other hand, comparing twin technology patents with enabling
technology patents only, twin technology patents mainly score higher on technical features
related to security, while patents counted as enabling technology more frequently protect
technical feature in the area of analytics, GPS and Al. Overall, the Al score is still rather
small. On average, 3% of the CPC classes of enabling technology only patents are relevant

for Al

Due to the overlap between CPC classes in enabling and core categories, we standardize the respective
share in both scores in order to be able to interpret the results in percentages.




Table 2: Digital Intensity of 4.0 Patents

Share of ... Mean  St. Dev. Min p25 P75 Max
Non-digital CPC 0.467 0.310 0.000 0.200 0.750  0.994
Digital CPC 0.533 0.310 0.006 0.250 0.800  1.000
Core CPC 0.394 0.344 0 0.1 0.7 1
Hardware CPC 0.224 0.310 0 0 0.4 1
Software CPC 0.071 0.208 0 0 0 1
Connectivity CPC  0.128 0.238 0 0 0.2 1
Enabling CPC 0.246 0.320 0.000 0.000 0.417  1.000
Analytics CPC 0.122 0.250 0.000 0.000 0.125 1.000
Security CPC 0.060 0.185 0.000  0.000 0.000  1.000
Al CPC 0.008 0.068 0.000  0.000 0.000  1.000
GPS CPC 0.036 0.151 0.000 0.000 0.000  1.000
Power CPC 0.007 0.049 0.000  0.000 0.000  1.000
3D CPC 0.001 0.013 0.000  0.000 0.000  1.000
Interface CPC 0.010 0.066 0.000  0.000 0.000  1.000

Notes: Population: 471,807 4.0 patents with a positive score in core or enabling technologies.
Patents related to smart applications only are excluded.
Source: PatStat Spring 2020 edition. Own calculation.

Table 3: Digital Intensity of 4.0 Patents, by Technological Area

Core Tech only  Enabling Tech only  Twin Tech

Share of ... Mean Mean Mean
Non-digital CPC 0.48 0.44 0.47
Digital CPC 0.52 0.56 0.53
Core CPC 0.52 - 0.46
Hardware CPC 0.31 - 0.54
Software CPC 0.12 - 0.05
Connectivity CPC 0.11 - 0.42
Enabling CPC - 0.52 0.42
Analytics CPC - 0.28 0.20
Security CPC — 0.03 0.16
Al CPC - 0.03 0.01
GPS CPC - 0.15 0.02
Power CPC - 0.001 0.01
3D CPC — 0.003 0.001
Interface CPC — 0.02 0.02

Notes: Population: 193,163 core technology patents only, 86,116 enabling technology patents
only and 138,528 twin technology patents.
Source: PatStat Spring 2020 edition. Own calculation.



Figure 4: Digital Intensity of 4.0 Patents over Time, by Technological Area
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Finally, Figure 4 shows how the digital intensity of 4.0 patents has evolved over time.
Two developments stand out: First, the digital intensity of twin technology patents has
been fairly stable over the entire period since 1980, centered at around 53% over time. In
contrast, the digital intensity of patents relating only to either core or enabling technologies
shows steadily decreasing trend over time. This decline has become especially strong after
2005 for core technologies and after 2008 for enabling technologies. Our findings imply that
while the absolute number of core and enabling technology patents has sharply increased
over time, the average digital content of these patents has become smaller over time. Most
likely this reflects the diffusion of 4.0 technologies in the economy. In recent years, these
technologies have been more widely used for inventions which combine 4.0 and non-4.0
technological features. We will dig deeper into the diffusion of 4.0 technologies using

citation analysis in section 4.

Given the strong variation in the digital content of 4.0 patents and its varying evolution
over time by technological areas, we propose to use fractional counts in addition to the
absolute number of patents. Fractional counts imply that we weight each 4.0 patent by
its digital intensity. Similar to Figure 3, Figure 5 (a) shows the number of 4.0 patents
over time using fractional counts and (b) the corresponding growth rates by technological
area. Given that the digital intensity of twin technologies has been fairly stable over time,
we see a similar pattern for twin technologies as in Figure 3, albeit at a lower level in
terms of the number of patents. In contrast, differences emerge for core and enabling
technologies. The sharp decline in digital intensity for core technologies has more than
offset the increase in the absolute number of patents, so that we see a decline in core
technologies after 2012. For the entire period 2010-2016 the average growth rate is close to
zero. For enabling technologies, the increase in the number of patents was stronger than
the decline in digital intensity, so we still see an increasing trend for enabling technologies
in the period 2010-2016.

10



Figure 5: Number and Growth (Fractional Counts) of 4.0 Patents over Time, by Techno-
logical Area

(a) Fractional count (b) Annual growth rate
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Source: PATSTAT 2020 - spring edition, own calculation.

We further break down the analysis by looking at the evolution of different technologies
within technological areas in order to better understand whether specific technologies are
the main drivers of the development we see for core, enabling and twin technology patents.
Figure 6 shows for every technology its average intensity. The hardware intensity is cal-
culated as the average share of CPC classes related to hardware technology over all CPC
classes in a given year. The declining trend for core technologies in digital intensity shown
in Figure 6 is to a very large extent driven by the declining importance of CPC classes
related to hardware features. This share has fallen from about 60% in mid of the eighties
to roughly 20% in 2016. In contrast, technical features related to connectivity increased
strongly until 2000 and have remained stable at around 12% thereafter. The software in-
tensity has been fairly stable over the entire period at around 12%. The falling trend in
digital intensity of purely enabling technology patents is mainly driven by a decline in data
analytics and since 2008 also in GPS technology which represent the lion share of enabling
technological developments. In contrast, technologies related to security, interface, 3D and
power haven been fairly stable over time. Outstanding is the development of Al within
purely enabling technology patents. Its Al intensity has more than tripled since 2004.
In 2016, on average 5.4% of the CPC classes on enabling technology patents describe Al
technologies compared to 1,35% in 2004. Finally, looking at patents for twin technology,
whose overall digital intensity has been fairly stable over time, Figure 6 shows that the
mix of technologies has substantially changed over time. While the intensity of hardware
and data analytics has steadily fallen, feature related to connectivity and security have
significantly increased and in case of connectivity even surpassed hardware and analytics
since the beginning of the 2000. Since the mid of 2000, however, we see a slight decrease
for connectivity and security intensity as well. The Al intensity of twin technologies has
also been very stable over time, it is only in the last two years that we see a substantial
increase from 0.8% to 1.6%.

Accounting for the digital intensity of different technologies, Figure 7 shows the number

11



Figure 6: Technology Intensity over Time, by Technological Areas
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Figure 7: Number of 4.0 Patents (Fractional Counts) over Time, by Technology within
Technological Areas
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of patents using fractional counts.

Finally, for twin technology patents, the peculiarities of 4.0 technological recombinations
are analyzed by means of a correlation analysis. Figure 8 depicts the correlation matrix
of technology intensities at the patent level. On the colour scale, red indicates a positive
and blue a negative correlation between technologies. The figure shows that different
types of core technologies are more strongly correlated with each other than enabling
technologies. In more detail, connectivity technologies are strongly positively correlated
with security technologies and to a lesser extent also with interface technologies for data
transmission and software technologies. Within twin technologies, however, connectivity is
less frequently combined with hardware and data analytics. Security technologies stand out
as they are disproportionately combined with all other technologies except connectivity.
The correlation pattern for software and interface technology is very similar. They are
positively correlated with each other and show a weak positive correlation with hardware
and connectivity but a negative one with data analytical purposes and security applications.
3D, GPS and Al are technologies that are rather independent of other technologies. 3D
is only weakly combined with Al, and AI additionally shows a weak negative correlation

with security and connectivity.

Figure 8: Correlation of 4.0 Technology Intensities for Twin Technology Patents
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Source: PATSTAT 2020 - spring edition, own calculation.

Figure 9 shows that this technology recombination pattern of twin technology patents
has been fairly stable over the four decades, but with some interesting exceptions. For
example, the positive correlation between connectivity and security has become stronger
in the last two periods, while the positive correlation between connectivity and interface
technologies has become weaker, even reaching zero in the most recent period. With regard

to hardware technology, it can be observed that it has been combined more frequently
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Figure 9: Correlation of 4.0 Technology Intensities for Twin Technology Patents, by Time
Period
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Source: PATSTAT 2020 - spring edition, own calculation.

with software infrastructure like cloud computing, mobile operating systems or blockchain
technologies and has become more neutral towards enabling technologies. Also interesting
is the correlation between data analytics and Al, which has changed from negative in the

first decade, to zero in the second decade and to positive in the last two periods.

3.3 Development of 4.0 Patenting across Industries over Time

This section studies the development of 4.0 patenting over time at a sectoral level. In
order to perform a sector level analysis, we have to classify each patent to an industry.?
We use the TPC classes of each patent and the 2-digit NACE Rev.2 concordance table
from Patstat, developed by Van Looy et al. (2015). The concordance table assigns 640
IPC codes to 26 industries.

Figure 10 shows the evolution of the number of industries that have a least one 4.0
patent application in a given year overall and by technological area. Two findings stand
out. First, the number of industries fluctuates from year to year, but shows a clear upward
trend. Starting with 17 industries in 1980, over 22 industries in 2000, we observe that
all 26 Nace 2-digit industries have patented 4.0 technologies in 2016. Thus, the diffusion
of the generation of 4.0 technologies has strongly increased over time. Second, the rate
of penetration across industries has increased faster among purely enabling technologies
than twin and core technologies only. However, the trends for the three technological areas
seem converging towards the overall trend of 4.0 technologies over the most recent period
since 2011, leading to 24 industries patenting twin technologies and 23 industries active in

inventing core and enabling technologies in 2016.

Of course, not each industries contributes the same amount to 4.0 patenting. We there-
fore calculate the proportion each industry contributes to the number of 4.0 patents (frac-
tional counts) in a given year to see whether the importance of different industries has
changed over time. The 26 2-digit Nace industries consist of 23 manufacturing indus-

tries which we summarize based on their average R&D intensity into high, medium-high,

*We use the term industry and sector interchangeably.
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Figure 10: Number of Industries Patenting in 4.0 Technologies
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medium-low and low technology using the Eurostat classification scheme.® The only Nace
2-digit industry in services produced by the concordance table is Nace 62. The latter cap-
tures computer programming, consultancy and related activities and we shortly call it ICT
in the following.* While the absolute numbers show a substantial increase in 4.0 patenting
for all five industries over time, this increase has not been proportional. This has led to a
clear shift in the contribution of different industries to the overall number of 4.0 patents as
Figure 11 shows. The share of 4.0 patents invented by the high tech industries has steadily
increased from about 45% in the early years to about 65%. This has mainly come at the
cost of medium high technology whose share has almost halved from about 50% in 1981 to
25% in 2016. The share of ICT is still comparably small but steadily increasing. Between
2000 and 2016 it has doubled from about 1.7% to 3.4% in line with the nature of core

technologies (e.g. software).

Finally, Figure 12 splits the industry contribution by technological area. The industry
composition and its evolution over time is different in all three areas. In core and twin
technologies high tech and low tech together have the lion share of the patenting activity
with more than 90%. For both technological areas we observe an increasing concentration of
high tech industries. Starting from an already high level of about 60%, high tech industries,
mainly the computer and electronics industry, have further increased their share to about

80% in later periods. In contrast, the proportion of high tech was rather small in inventing

3High tech (HT) consists of Nace2 2-digit 21 (manufacture of basic pharmaceutical products and phar-
maceutical preparations) and 26 (manufacture of computer, electronic and optical products), medium high
tech (medHT) of 20 and 27-30, medium low tech (medLT) of 19 and 22-25 and low tech (LT) of 10-18, 31
and 32.

“In the following we leave out Nace 2-digit 42 and 43 in construction.
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Figure 11: Contribution to 4.0 Patenting (Fractional Counts) by Industry over Time

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Source: PATSTAT 2020 - spring edition, own calculation.

Figure 12: Contribution to 4.0 Patenting (Fractional Counts) by Industry and Technolog-
ical Area
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Source: PATSTAT 2020 - spring edition, own calculation.
twin technologies in the first decade at about 20%, but is has almost tripled to about 60%

in recent years. In both areas medium high tech industries sharply lost importance to high

tech, low tech and ICT industries. In contrast, the evolution of industrial composition looks
much more stable for enabling technologies, where high tech industries gain only slightly
and medium high tech industries lose only moderately. The ICT and low technology

industries mainly contribute to inventing enabling technologies.

4 Diffusion of 4.0 Patents over Time

Stoneman and Battisti (2010) define technological diffusion as “the process by which the
market for a new technology changes over time and from which production and usage
patterns of new products and production processes result”. The cumulative adoption of
innovation over time follows an S-shaped curve, forming a technology adoption life cycle
(Rogers 2010). This general pattern has been established in the literature even if specific

industry or technology studies show different time-spans to reach this S-shaped curve (see
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Stoneman and Battisti 2010, for an overview). Numerous factors can influence the time
span needed to adopt new technologies, among those can be regulations, standards, techno-
logical trajectories, technological opportunities, market competition, network externalities,
skills, and technological and organizational complementarities (Silverberg 1991). Besides
these macro and meso determinants, specific technological are likely to influence the scope
and pace of technological diffusion across sectors. Some technologies are more pervasive
than others and are likely to encompass a larger set of applications across sectors. These
technologies, known as General-Purpose Technologies (GPT), tend to follow two main dif-
fusion phases: first a phase of slow diffusion, followed by a phase of strong acceleration
(Bresnahan 2010). Within this process, market conditions have been brought to the fore
as a crucial argument to explain the diffusion across sectors (Griliches 1957). Following
previous studies for information and communication technologies (Hall and Trajtenberg
2004), we investigate the pattern of diffusion of industry 4.0 technologies across sectors

and to what extent their use alters inter-sectoral technological linkages.

This section studies the diffusion of 4.0 technologies from the supply-side using citation
analyses. Forward citations are the most common proxy to measure the diffusion of tech-
nologies. They count the number of citations that a given patent receives in future patent
documents, and in our case they therefore measure technological developments that build
upon 4.0 technologies. Forward citations are furthermore a proxy for the importance and
economic value of a patent (Trajtenberg, 1990; Hall, et al., 2005; Harhoff et al., 2003).
This section provides an overview of the forward citation pattern of 4.0 patents compared
to non-4.0 patents. By looking at how often they are cited and by whom, we get first-
hand information about interesting differences in the diffusion process depending on the
4.0 technology subgroup, the country of origin of the citations, the NACE sector and how
long it takes for this knowledge to spread. Subsection 4.4 then looks at the top most cited
4.0 patents as indicator for breakthrough technologies and their diffusion process as well
as at the top 4.0 filing companies over time and lists the individual top 30 most cited 4.0

patents and what technology they relate to.

As starting point, we use the same sample of 513,880 distinct patent families earlier
identified as 4.0 patents and collect all forward citations for these patents. Since older
patents have had more time to receive citations which lead to a bias when comparing it
with more recent patents, we follow if necessary the common approach and use a five-year
time window after filing date, in which citations are counted. In this case as a result, only
patents filed until the end of 2011 (around 2.73 million applications, of which 385,826 are
4.0 patents) are considered in order to account for the full five-year window. Furthermore,
when differentiating between citations from 4.0 and non-4.0 patents, we can only use the
citations made by other EP patents, as only these can be classified into 4.0 technologies. In
each graph or table, the notes below indicate which data have been considered. A patent
or a citing patent is identified as being 4.0 if at least one of its CPC technology classes
falls within the EPO-defined list of CPC codes relevant to Industry 4.0.
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4.1 Overall Diffusion: Number of Citations

We measure the overall diffusion of a patent using its total number of citations. 59.4%
(52.4%) of all EP patents filed between 1980-2016 (1980-2011) have received at least one
citations to date (spring 2020). On average, 4.0 patents of that period have received less
citations: 1.3 compared to 1.7 citations for non-4.0 patents. The left graph of Figure 13
shows the distribution of citations of all EP patents conditional on being cited. In addition,
it shows the difference in the distribution of 4.0 and non-4.0 patents. For example, the
blue part of the bar for one citation indicates that the density for 4.0 is higher than that
for non-4.0 patents by that amount. Overall, we can conclude that the citation patterns
are pretty similar for 4.0 vs non-4.0 patents, although the distribution is slightly more
skewed to the right for non-4.0 patents. This means that also conditional on being cited,
non-4.0 patents are cited slightly more than 4.0 patents. The slower rate of diffusion
is in line with the argument of a slow diffusion of GPTs in the first phase (Bresnahan
2010). Even when broken down into the three main 4.0 categories - core, enabling and
smart applications - as can be seen on the right graph of Figure 13, citation patters do
not deviate much. Only slight deviation can be observed indicating that core technology
patents receive comparatively less citations while application patents are slightly cited

more frequently.

Figure 13: Distribution of All Citations
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Notes: Data used all EP applications filed between 1980-2016 and counts all family-cleaned citations. No
restrictions are made wrt. a citation time-window. For the figure to the right, only patents with mutually
exclusive categories were used. Outliers (top 1%) were dropped.

Source: PATSTAT 2020 - spring edition, own calculation.

4.2 Diffusion Towards 4.0 and Non-4.0 Technologies

In this subsection, we investigate to which extent 4.0 patents follow the same pattern of
diffusion across other 4.0 technologies and non-4.0 technologies. We therefore classify all
citations into 4.0 (non-4.0) citations in a first step if the citing EP patent is a 4.0 (non-4.0)
patent, and then classify each patent in a second step according to whether it receives only

4.0 citations, only non-4.0 citations or mixed citations, indicating that these inventions have
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Figure 14: Diffusion Towards 4.0 and Non-4.0 Technologies Using Citation Segregation
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Notes: Data used are all EP applications filed between 1980-2016 that received citations by other EP
patents. No restrictions have been made regarding a citation time-window, but only citations by other EP
applications can be accounted for.

Source: PATSTAT 2020 - spring edition, own calculation.

diffused to both 4.0 and non-4.0 technological areas. The left graph of Figure 14 shows
that 62.5% of 4.0 patents receive all their citations only from other 4.0 patents. This is a
rather substantial share, considering that only a comparatively low share (16.2%) of EP
patents protect 4.0 technology inventions. Conversely, 91.5% of non-4.0 patents are cited
only by other non-4.0 patents. This indicates a rather strong segregation. From another
perspective, only 8.6% (5.6+3) of non-4.0 patents serve as a technological foundation for
4.0 inventions. For 4.0 patents, the corresponding share is significantly higher; 37.5% of 4.0
patents serve as a technological foundation for non-4.0 inventions, among them are 16% of
4.0 patents that have only diffused to non-4.0 technologies and 21.5% that have diffused
to both types of technologies. Overall, these findings are in line with the expectation that
4.0 patents have a broader industrial applicability. The right graph of Figure 14 shows
the origin of citations received by 4.0 patents split by technological area. Not only do core
technology patents receive slightly fewer citations, they also diffuse more towards other
4.0 technologies (64.7%) than enabling technology patents (57%) and smart application
patents (54.7%). Or to put it differently, 45.3% of smart application patents and 43% of
enabling technology patents diffuse toward non-4.0 technologies and serve as a technological

foundation for non-4.0 inventions.

Some 4.0 technologies diffuse into non-4.0 inventions more than others. Figure 15 shows
the diffusion pattern of cited 4.0 by splitting them into their respective 16 technology
subgroups. Here it becomes clear that among core technologies software infrastructure
patents diffuse much less to non-4.0 technologies (28%) than hardware or connectivity
patents. For example, more than 40% of patents related to connectivity have served as
technological foundation for non 4.0 inventions. Out of the enabling technologies, it is 3D-
support systems that diffuses the most to Non-4.0 patents: 80.7% of 3D patents diffuse into
non-4.0 technologies, these are almost evenly split between those that diffuse exclusively

into non-4.0 technologies and those that are picked up by both 4.0 and non-4.0 technology
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Figure 15: Diffusion Towards 4.0 and Non-4.0 Technologies Using Citation Segregation, by
4.0 Technology Subgroup
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Source: PATSTAT 2020 - spring edition, own calculation.
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inventions. When including 'mixed’ citations, then data analytics (41.2%), intelligent
power handling (39.4%) and Al (39.2%) also play a comparatively larger role in diffusion

to non-4.0 technologies.

4.3 Diffusion of 4.0 patents by NACE Industry

Industries differ greatly in their role in the value-added process, some are primarily produc-
ers of components and inputs for other industries while other industries produce primarily
for private end consumers. As a result, the diffusion of new 4.0 technologies can also vary
greatly between industries. Figure 16 shows the mean number of citations for all industries
with 1000 or more 4.0 patents in the period 1980 to 2011.> The communication industry
(Nace 26.3) has by far the highest number of 4.0 patents. Almost one third of all 4.0 patents
belong to this industry, followed by the computer equipment industry with another 17.4%.
Not only do these industries produce the largest amount of 4.0 patents, they also get cited
the most on average. 4.0 patents from communication equipment producers receive on
average the highest number of citation (2.5 per patent), closely followed by the ICT, other
general purpose machinery and computer equipment producers (all 2.4) and electronic
component producers (2.3). Comparatively less diffused are 4.0 patents from industries

like chemicals, transport, fabricated metal, textiles or other special purpose machinery.

Figure 16: Mean Number of Citations Received by 4.0 Patents, by NACE Industry
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Notes: Mean number of forward citations of 4.0 patents in industries with 1000 or more 4.0 patents filed
between 1980-2011 that received citations by other EP patents. Industry classification based on 2-/3-digit
NACE Rev.2 concordance table from Patstat (Van Looy et al. 2015). For a full industry list, see Table 8.
Source: PATSTAT 2020 - spring edition, own calculation.

Figure 17 shows for the same set of industries to what extent these 4.0 patents diffuse
to other 4.0 technologies. Especially in industries related to the manufacturing of electrical

equipment, ICT and computer equipment, 4.0 patents primarily serve as a technological

SWe use this threshold in order to prevent that outliers in industries with a very small number of 4.0
patents have strong impact on the results. Table 8 in the Appendix shows the total number of 4.0 patents
and different citation indicators for all industries using the 2-/3-digit NACE Rev.2 concordance table from
Patstat (Van Looy et al. 2015).
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Figure 17: Share of 4.0 Citations of 4.0 Patents, by NACE Industry
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classification based on 2-/3-digit NACE Rev.2 concordance table from Patstat (Van Looy et al. 2015). For
a full industry list, see Table 8.

Source: PATSTAT 2020 - spring edition, own calculation.

foundation for subsequent follow-on 4.0 inventions, since more than 83% of their citations
are 4.0 citations. The second group of industries consists of vehicles, other general purpose
machinery, communication and instruments with a 4.0 citation share of 76 to 80%. For
all other industries this share is below 70%. At the lower end of the distribution, we find
industries like electric motors, textiles, other special purpose machinery or chemicals whose

4.0 patents subsequently stimulate relatively more non 4-0 inventions.

Citations can also be used to examine the temporal pattern in the diffusion process.
A well-known indicator is the time span how long it takes for a patent to receive its first
citation. Figure 18 shows for all 4.0 patents in a given industry the number of months
to receive the first citation. While the total number of 4.0 patents in the pharmaceuti-
cal industry is rather low (488 4.0 patents in total), these patents are disseminated very
strongly (mean citation rate of 2.5) and very quickly. With 25 months to get the first ci-
tation, pharmaceutical is in the top position, followed by electrical lightening (27 months)
and a number of industries consisting of food, wood, printing, rubber and plastic, com-
munication, electromedical instruments and other general purpose machinery, all with 28
months. Interestingly, the industries with the highest number of 4.0 patents and the high-
est citation rates (communication and computer) are not in the top two positions in terms
of time span to first citation. But overall, Figure 18 also shows that the time to first
citation is fairly evenly distributed across industries. In more than 3 out of 4 industries,

the time span is only between 25 and 30 months.
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Figure 18: Number of Months to first citation of 4.0 patents by NACE Industry

Notes: Data used all EP 4.0 patent applications filed between 1980-2011 that received citations by other
EP patents. Industry classification based on 2- and 3-digit Nace Rev2.
Source: PATSTAT 2020 - spring edition, own calculation.

4.4 Diffusion Pattern of Top Cited 4.0 Patents and Top 4.0 Patent Ap-
plicants

The top cited patents are considered to be breakthrough innovations because they have the
largest impact on society and technological advancement. In order to get a better under-
standing of the type of technologies that are most diffused, Table 9 in the Appendix lists
the individual top most cited 4.0 patents. Most of the patent owners are well-established
multinationals residing in Japan and the US. In fact, 14 and 9 of the top 30 most cited 4.0
patents are filed by these countries respectively. Almost half (14) and thus a disproportion-
ately high share were patents whose main NACE Sector was communications equipment
(code 26.3). Texas Instruments’ electronic television program guide system received the

most citations within 5 years after application.

For the subsequent analysis, we follow Ahuja and Lampert’s (2001) approach to iden-
tify breakthrough innovations and focuse on the top 1% most cited 4.0 patents and their
diffusion pattern. Figure 19 gives us an idea of the geographic location that top cited 4.0
patents diffuse to by presenting the origin of the citing patent. The country of origin is
defined by the firm’s assignee location. For comparison, we also show the origin of forward
citations for the top 1% most cited non-4.0 patents. For both 4.0 and non-4.0 patents the
United States account for the largest share of forward citations. Firms located in the US
represent 40% of the citations that the top 1% most cited 4.0 EP patents received. This
is relatively larger than the US’s share for Non-4.0 EP patents (35%), indicating that 4.0
technologies diffuse more-so to the US than non-4.0 technologies do. Japan accounts for
the second largest share of citations; 24% and 21%, respectively. Among European coun-
tries, Germany make up the largest share with 7% of the citations of top 4.0 patents. In
contrast to the US and Japan, however, they represent a relatively larger share of citations
in non-4.0 patents. A similar pattern is found for France, Great Britain or Italy. The pat-
terns described for the top 1% most cited 4.0 patents are also in line with the geographical
diffusion of patents citing 4.0 patents using the total sample of 4.0 patents, as it is shown

in Figure 20).

24



Figure 19: Geographical Diffusion of Patents Citing Top Cited 1% 4.0 and Non-4.0 Patents
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Notes: Data used are all forward citations from the top 1% most cited 4.0 and Non-4.0 EP applications
filed between 1980-2016 that received citations by other EP patents. No restrictons are made wrt a citation
time-window. The origin of the citation is defined as the country that the citing firm (assignee location)
is residing in.

Source: PATSTAT 2020 - spring edition, own calculation.

Finally, we study the top 10 firms with the most 4.0 patent applications filed in 2009-
2011 and how their patents diffuse. Together they accounted for a substantial share of
18.9% of all 4.0 patents filed during that period. Taking non-4.0 patents additionally into
account, these 10 firms alone applied for 7.6% of the EP applications filed in 2009-2011.
Figure 21 shows that Samsung takes first place among 4.0 inventors, followed by Qualcomm
and LG Electronics. Strikingly, all of the top 10 firms have seen a noteworthy increase
in the absolute number of 4.0 patents filed compared to 1999-2001. For many but not
for all (Intel, Bosch) top 10 firms, this increase has been stronger than the growth for
the total sample (see Figure 2). When weighting their applications by citations, however,
the ranking changes. From Figure 22 it becomes apparent that now LG Electronics is in
first place, followed by Sony and Samsung. Furthermore, the older 4.0 patents (filed in
1999-2001) are far more valuable than the more recently filed 4.0 patents, despite having

restricted both to a 5-year citation window.
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Figure 20: Geographical Diffusion of Patents Citing 4.0 Patents (Absolute Number)
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Notes: Data used all citations of EP 4.0 patents filed between 1980-2016 that received citations by other
EP patents. No restrictons are made wrt a citation time-window. The origin of the citation is defined as
the country that the citing firm (assignee location) is residing in.

Source: PATSTAT 2020 - spring edition, own calculation.

Figure 21: Top 10 4.0 Applicants Over Time
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Figure 22: Top 10 4.0 Applicants and Their Citation Weighted Count
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Source: PATSTAT 2020 - spring edition, own calculation.
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5 Impact of Adopting AI on Productivity

Up to now, we have studied the generation and diffusion of new inventions related to the
Fourth Industrial Revolution. A particular focus was on distinguishing the underpinning
technological fields in terms of their functional role in digitizing economics activities, for
example translating activities into information, analysis of this information, and intercon-
nection between machines generating and treating information. This section complements
the analysis on the generation and diffusion of 4.0 technologies conducted in the previous
two sections in an important way: It examines firm-level impacts of using 4.0 technologies.
More specifically, we analyse the productivity effects of developing and adopting artificial
intelligence (AI) technologies. We would have liked to explore this question for 4.0 tech-
nologies in general, but the available data limit our analysis to Al. On the other hand,
Al is supposed to be the core technology of the the Fourth Industrial Revolution that has

shown the strongest growth since 2010 and especially since 2015.

The diffusion lag between the date of the initial invention and the moment when firms
realize the economic benefits associated with the use of this technology has been widely
studied (see Hall and Trajtenberg 2004, for an illustration). Several determinants have been
empirically well-established to influence firms’ technology adoption decisions (Stoneman
and Battisti 2010). R&D capabilities, the availability of skills, and compatible organiza-
tional routines are among the most important determinants (Cohen and Levinthal 1989;
Silverberg 1991; David 2000). A.I. technologies are no exception to this rule (Brynjolfsson
et al. 2017; Haskel and Westlake 2018). The interesting point related to A.I. technologies
lies in its complementarity with data. In contrast to other generic technologies, the use of
A 1. does not depend too much on technological complementarity, but the availability of
“good data”. Firms must collect large and harmonised datasets to be able to grasp the full
benefits from A.l. in easing decision-making and analysis. Developing in-house capacities
to harmonise efforts in collecting relevant data that reflects the actual firms’ problems and
environment is hence key to get relevant predictions. This decision to jointly adopt A.l.
with complementary investment in data infrastructure and how this affects productivity is
studied in this section. We set the stage in subsection 5.1 with a short analysis of the diffu-
sion of Al in Germany using patent data, followed by descriptive evidence on the adoption
of Al and data infrastructure investments using the Mannheim Innovation Panel (MIP).
The MIP is a German firm-level data set that we use to analyse the productivity effects of
AT adoption. In the cross-section 2018 it included a specific and detailed set of questions
of the adoption of Al methods that we exploit. Productivity estimates are presented in

subsection 5.2.
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5.1 Patenting and Adoption of AI in Germany
5.1.1 AI Patenting in Germany

We start with a short overview of patenting activities in Al related fields in Germany before
we exploit a unique dataset that documents the adoption trend of such technologies at the
firm level in Germany. Figure 23 depicts the patenting activities at EPO over time and
across the main Al applications areas for Europe compares it with Germany. The figures
rely on the Al delineation developed by WIPO and suggested as the best practice in a
recent comparative analysis on the topic. That is, we distinguish computation, pattern
recognition, and a cluster of connected technologies in speech recognition, image analysis
and machine learning (Baruffaldi et al. 2020). Both graphs exhibit a structural uptake of
all three areas since 2010, but especially in computation Al applications. The latter field
has more than two and a half times as many patents as those in pattern recognition and
speech recognition. The German case shows a similar pattern in the increasing patenting
activity, but differ in terms of composition over time. German companies seem to specialize
their A.I. patenting activities in patterns recognition and lately in computing even stronger

than other countries since the 2010s.
Figure 23: Al Patents in Europe and Germany over Time, by Al Areas

(a) Europe (b) Germany

3
g
5

Filng Year
recognising patterns speech recognition/
(text, image) image analysis/ML

Number of EP Patent families

Filng Year
recognising patterns speech recognition/

B computation (text, image) image analysis/ML Il computation

Notes: Patents (patent-family cleaned patent applications) with at least one CPC class that has been
identified as being relevant for Al at the EPO.
Source: PATSTAT 2020 - spring edition, own calculation.

5.1.2 Firm-Level Evidence on the Adoption of AI in Germany

Up to now we have measured the development and diffusion/adoption of 4.0 technologies
and Al using patent data and related citation data. However, not all Al inventions may be
patented and the citations to Al patents only cover a specific type of knowledge diffusion
which leads to a patented follow-on invention. For example, the pure acquisition of an
Al-based production technology would not be captured as adoption activity. Hence, we
additionally use the Mannheim Innovation Panel (MIP). The MIP is the German contri-

bution to the European-wide Community Innovation Surveys. The CIS is a representative
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survey among all German firms with more than 5 employees in manufacturing (Nace 2.0
classes 10-33), mining (Nace 2.0 classes 05-09), energy and water supply and recycling
(Nace 2.0 classes 35-39) and core service sectors (Nace 2.0 classes 46 wholesale, 49-53
transport, 58-63 information and communication services, 64-66 financial services 69-74
technical services and 78-82 other business related services). Our main estimation sample
consists of 4360 firms with non-missing information on all relevant variables, which we de-
fine below. As the sample is representative for the German population, the vast majority
of sampled firms is rather small. The median firm size is 27 employees, while the average

firm size is about 192.3 employees, indicating that firm size is highly skewed (see Table 5).

Most importantly, the German CIS2018 included a specific set of questions on artificial
intelligence which better captures the use of Al methods in firms since it is not restricted
to Al patenting activities. AI is a binary variable that equals one if the firm uses artifi-
cial intelligence. In the survey artificial intelligence is defined as a method of information
processing that allows computers to autonomously solve problems and examples like lan-
guage understanding, image recognition, machine learning and knowledge-based systems
are given. The survey additionally asks each firm who developed the Al method(s) em-
ployed, and we correspondingly define three indicators: AI in-house equals 1 if the firm
mainly develops the Al methods within the firm, Al joint equals 1 if they develop it in
cooperation with external partners and AI outsourced is 1 if the Al methods used were
mainly developed by external parties. The latter can include the use of standard Al so-
lutions as well as firm-specific special solutions developed by external parties within the
framework of an external research contract. Al joint/out is a combined dummy that in-
dicators that external parties were involved in developing the Al method employed, either

partly or fully.

Our analysis aims to study the impact of the use of Al technologies, which is supposed
to be complementary to the availability of “good” data. Data can either be data collected
in-house or external data bases. The MIP survey also asks firms whether and how much
they have invested in setting up new or maintaining existing internal data bases (including
internal expenditures for software infrastructure programming) and the same for purchasing
external data bases collected by others. Data in-house and Data external are dummy
variables indicating positive expenditures for internal and external data bases respectively,

while In(Data in-house) and In(Data external) measure the corresponding log expenditures.

Table 4 shows the overall Al adoption rate and its pattern across sectors and firm
size. In 2018, 7.9 of German firms used AI methods in their company.®. The use of Al
is still very heterogeneously distributed across industries and firm size. Among small and
medium-sized enterprises with less than 250 employees, about 6% of the firms employ Al-
based technologies and solutions, while in the group of large companies with more than
1000 employees, it is more than 4 out of 10. In terms of sectors, knowledge-based service
firms employ AI by far the most (15.5%), followed by high-tech firms (10.9%). Higher

5This is very close to the extrapolated figure of 5.8% for Germany as a whole (Rammer 2020), indicating
that our estimation sample does not give rise to selectivity concerns.
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adoption rates in these sectors are not surprising as they both offer more technological and
market opportunities to exploit Al technologies. In all other industries, it is so far only
3.5 to 4.3% of companies that use Al

We furthermore evidence that, on average, firms tend to adopt Al via acquiring these
technologies and not developing them in-house. Only around 1.5% of companies have
developed them entirely in-house. As many as 2.3% of the firms have developed them
in cooperation with external partners, while 4.0% of the companies have completely out-
sourced the development of their Al technologies. Interestingly in most sectors and across
size categories, the proportion of firms that fully outsource the development of Al among
the AI using firms is similar at about 50%. Finally, the last two columns of Table 4 show
the rate of firms that invest in data bases which can be potentially exploited using Al
technologies. In total, 37% of the firms invest in setting up new or maintaining existing
internal data bases while 40.8% of firms acquire external data bases. Large firms with
more than 1000 employees invest more frequently in own than external data bases, while
smaller firms rely more often on the acquisition of external data bases. It is interesting to
note that high-tech companies tend to focus relatively more on internal databases, while

it is the opposite for knowledge-intensive service companies.

Table 4: Al Adoption Rate and Data Expenditure Rate

Al Al Al Al Data Data
in-house  joint  outsourced  in-house!  externall

High Tech  0.109 0.024 0.039 0.043 0.461 0.449
Low Tech 0.035 0.003 0.006 0.025 0.292 0.337
KIS 0.155 0.033 0.046 0.074 0.463 0.484
LKIS 0.037 0.004 0.007 0.027 0.313 0.354
Energy 0.043 0.005 0.014 0.021 0.316 0.421
5-99 0.062 0.013 0.016 0.032 0.338 0.365
100-249 0.060 0.008 0.017 0.035 0.477 0.564
250-999 0.160 0.017 0.067 0.076 0.506 0.579
1000+ 0.402 0.0667 0.125 0.200 0.614 0.551
Total 0.079 0.015 0.023 0.040 0.370 0.408

Notes: ! Data in-house is a binary indicator that equals 1 if the firm has invested in building
up internal data based (including internal software infrastructure programming). Data external
is a binary indicator that equals 1 if the firm has acquired external data bases (including soft-
ware). In the estimation the corresponding expenditures values are used. Sector classification is
based on a Eurostat definition using 2-digit Nace Rev2 information. KIS: Knowledge-intensive
services, LKIS: less knowledge-intensive services.

Source: Source: ZEW - Mannheim Innovation Panel CIS2018.

This uneven adoption pattern suggests that the nature of activities and presumably the

size of investments matter to grasp the benefits of Al
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5.2 Econometric Evidence on the Productivity Impact of Al
5.2.1 Econometric Framework

We measure the benefits of Al adoption using a standard Cobb Douglas production frame-
work as theoretical framework (see, for example, Mairesse and Sassenou 1991). We estimate
in the first stage firm-level Total Factor Productivity (TFP) using the Levinson-Petrin (LP)

approach and in the second stage the contribution of Al and investment in data on TFP.

The output of firm ¢ at time ¢ can be described by the Cobb-Douglas production function

in log linear version as:

Yit = Bo + Bilic + Brkit + Brmmir + wir + i, (1)

where y;;, m;;, and k;; denote firm 4's value of log output, log material, and log physical
capital in year ¢, and [;; denotes its log labour input, measured as the log number of employ-
ees. In addition to the observed inputs labour, capital and material, the CD production
function contains a term A;; which is a measure of firm i's level of efficiency, commonly
referred to as Total Factor Productivity (TFP).” In our log linear specification In(A;) is
decomposed into three elements, By, wi, and ;. The first element, [y, represents mean
efficiency across all firms, and w;; denotes the time- and firm-specific deviation from that
mean, while 7;; is a true error term that contains unobserved shocks and measurement er-
rors. €; is i.i.d normally distributed while we follow the usual assumption that w;; evolves

according to a first-order Markov process.

We assume that the firm-specific deviation from the mean efficiency is observable by the
firm when it makes its investment decision, but not by the econometrician. This leads to an
endogeneity problem since firm’s input choices will likely be correlated with its productivity
and thus with the error term of the productivity equation (Marschak and Andrews 1944).
In this case, OLS leads to inconsistent estimates. The variable inputs like labour and
materials are expected to have an upward bias and the coeflicients associated with quasi-
fixed inputs like capital are expected to be biased downwards in OLS (Olley and Pakes
1996). In order to estimate the production function, we use the non-parametric econometric
estimation method by Levinson and Petrin. This approach solves the endogeneity problem
using a control function approach. The main idea is to use observable material input to
proxy for unobserved productivity shocks. The basic assumption is that m; = fi(wit, kit)
and f; is invertible. Therefore w;; = ftfl(mit, kit). In a first step, we therefore regress y;;
on labour /;; and a non-parametric function ¢(m;, ki;) that we approximate with a second
order polynomial to get the coeflicient 5; and g?)z\t In a second step, we exploit the moment
conditions that capital k;; and lagged material m;—; are uncorrelated with the error term

to estimate the remaining production function parameters.

"The effect of Az on Yi is assumed to be Hicks-neutral, so TFP is additively separable from the other
production factors.
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In a second stage, we estimate TFP using the coefficient estimates from the first stage
and use T/F\Pit as dependent variable to estimate the impact of Al adoption and investment

in data bases on productivity:

TFP;, = y ALy +oln(DI) +~3 ALy x In(DI) +yaln(DE) +y5 ALy x In(DE) + Xy -+ (2)

where AT denotes Al adoption, and in(DFE) and In(DI) measure the log expenditure of
firms for setting up internal data bases and acquiring external data bases, respectively. In
order to test for for complementarity, our specification additionally accounts for the interac-
tion of AI with both investment in internal and external data investment. In an alternative
specification we differentiate between inhouse Al development, joint Al development and

outsourced Al and adjust the interaction terms accordingly.

In addition to Al and investment in internal and external data bases, a set of control
variables X;; is included. The latter includes industry dummies, a location dummy for

firms from East Germany and a dummy for firms belonging to a company group.

Table 5: Summary Statistics (overall sample)

N Mean S.D. pl10 p50 p90
Labour Prod.! 4360 0.184 0.326  0.045 0.114  0.333
In(Labour Prod.) 4360 -2.141 0.863 -3.095 -2.171  -1.099
TFP 4360 0.001 0.491 -0.461 -0.008  0.460
Labour 4360  192.269  1164.842 7 27  266.5
In(Labour) 4360 3.570 1.464  1.946  3.296  5.585
In(Capital) 4360 -2.777 2.3908  -5.943  -3.013 0
In(Material) 4360 -3.516 1.550  -5.545  -3.401  -1.691
Al 4360 0.079 0.270 0 0 0
AT in-house 4354 0.015 0.120 0 0 0
AT joint 4354 0.023 0.150 0 0 0
AT outsourced 4354 0.0402 0.196 0 0 0
Data in-house!? 1600 0.221 1.861  0.001  0.015  0.200
In(Data in-house) 4140 -1.327 2.093  -4.605 0 0
Data ext!? 1833 0.226 1.303  0.002  0.022  0.250
In(Data ext) 4177 -1.444 2.062  -4.605 0 0
East 4360 0.415 0.493 0 0 1
Group 4360 0.315 0.465 0 0 1

Notes: ! For illustration purposes, the variable is shown in million Euro while the log value
is used in the estimation. ? Descriptive statistics for firms with positive expenditure only. In
the estimation, the transformed variable log(1+expenditure) is used.

Source: Source: ZEW - Mannheim Innovation Panel CIS2018.

Table 5 shows the summary statistics for all variables used in the econometric analysis.
The average labour productivity is about 184 thousand Euro sales per employee. If firms
invest in setting up or maintaining internal data bases, they spend on average 221 thousand
Euro. However, the distribution on data base investments is highly skewed. The median

is much smaller with about 15 thousand Furo. The expenditures for acquiring external
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data bases is slightly higher with mean of 226 thousand Euro and a median of 22 thousand

Euro.

Table 6 presents results on simple differences in means of productivity and investment
in databases by Al adoption. Both average labour productivity and TFP is higher among
AT adopters than among non-Al adopters. We also confirm that investment in both in-
house and external databases is significantly larger among Al adopters. However, these
differences could also be driven by differences other observed and unobserved characteristics

like industry or firm size. We therefore perform an econometric analysis.

Table 6: Productivity and Investment in Databases by Al adoption

AT adoption
No Al Al  p-value

Labour Prod 0.181 0.218 0.0757*
In(Labour Prod) -2.152 -2.004 0.0021%***
TFP -0.002 0.044 0.0627*
Data in-house 0.154 0.737 0.0289**
Data external 0.176  0.620 0.0075***
Obs. 4015 345

Notes: N=4,360. Stars indicate significance of t-test of mean difference between firms with and without AI adoption,

allowing for unequal variances. ***( ** *): p<0.01(,0.05,0.10)

5.2.2 Econometric Results

Table 7 presents the results of the second stage estimates linking Al adoption with labour
productivity. Dependent variable is TFP that we estimated using the Levinsohn-Petrin
approach. For comparison, OLS estimates for labour productivity are presented in Table

10 in the Appendix. Overall, they show very similar results, so we focus on the LP results.

Column (1) shows the estimation results for equation (2), assuming that 2 to 5 are
zero. We therefore focus only on the impact of Al adoption. The productivity impact of
4.7% is rather large but slightly fail to be significant at conventional levels. The productiv-
ity difference is very close to the one reported in the simple mean difference test, however
using cluster-robust standard errors we do not find this difference to be significant any-
more. Thus, we cannot confirm that adopting Al technologies has on average a significant

impact on TFP.

While adopting Al in general does not guarantee to go with productivity gains, we
check in columns (2) and (3) whether the adoption process (i.e.in-house development,
joint development, and outsourced) has an impact on the productivity gains that firms
achieve as a result of using AI. Model (2) confirms significant differences. Firms that
purely develop their Al technologies with firms’ internal R&D capacities yield a significant
productivity boost of about 7.1%. In contrast, productivity gains are smaller and show

a much higher variance when firms develop them in cooperation with external partners
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or purely outsource them. The results in column (3) supports the previous findings by

pooling together joint and outsourced development of the adopted Al technologies.

While Models (1)-(3) focus solely on the role of AI, we extend the analysis in models
(4) to (6) to study the role of AI adoption, investment in data infrastructure and its
interplay. Column (4) adds investments for internal and external data infrastructure to the
specification. Both turn out to be insignificant showing that investing in data infrastructure
as such is also not associated with higher productivity. However, the picture changes when
we explicitly allow for the interaction between AI adoption and in-house and external
data infrastructure investments. The results suggest a high productivity gain of adopting
Al, when we simultaneously control for the related data investment strategies. Firms
on average boost productivity by 9.6% when they adopt AI technologies. This effect is
highly significant at the 1% level. Regarding investments in internal and external data
infrastructures, we corroborate the earlier finding that they do not significantly increase
productivity per se. However, we do find a complementary and enhancing effect of investing
in internal data infrastructure for firms which simultaneously adopt Al technologies. On
average, an increase in internal data infrastructure investment by 1% leads to an increase
in productivity by 0.038% when combined with AI adoption. In contrast, there is no
significant interaction effect of external data infrastructure investment and Al adoption.
The complementarity found for internal data infrastructure investment and Al is in line
with previous studies showing the importance of building a data infrastructure in the ICT
diffusion to fully grasp the benefits from using such technologies (David 2000). However,
our results add to this literature by showing that the source of data matters for productivity

effects of Al adoption.

In model (6) we simultaneously investigate the interplay between the underlying source
of Al development and firms’ data strategies. That is, we further extend our analysis by
distinguishing pure in-house versus joint outsourced Al and its interplay with internal
and external data infrastructure investments. Regarding our previous finding of comple-
mentarity between Al and internal data infrastructure investments, model (6) details that
this complementary relationship exists between both in-house Al as well as joint out-
sourced Al and internal data infrastructure investments. However, firms with in-house Al
still benefit from a higher complementarity effect from in-house data infrastructure (0.057)
than firms outsourcing Al or developing it with external partners (0.034). Surprisingly, in
model (6) we do not find any statistical significance in adopting AI which has been devel-
oped in-house. This in combination with the strong interaction effect with internal and
external data confirms that the initial finding on in-house AI adoption was driven by the
large amount of firms who jointly develop an in-house and external data infrastructure.
In contrast, firms that develop their Al solutions in-house Al and simultaneously focus
on external database investment achieve significantly lower (short-run) productivity gains
(-0.031). This detrimental effect on productivity highlights the importance of investing
in-house to create a data-oriented organizational culture and the capabilities to provide

large standardized datasets to address specific firms’ problems and to analyze various A.l.

35



Table 7: Impact of Al Adoption on TFP Across Firms’ Strategies

(1) (2) 3) (4) (5) (6)

Al 0.047 0.032  0.096***
(0.032) (0.033)  (0.035)
Al in-house 0.071**  0.071** 0.107
(0.035)  (0.035) (0.078)
AT joint 0.025
(0.071)
Al outsourced 0.048
(0.031)
Al joint/outsourced 0.039 0.093**
(0.046) (0.037)
Ln(data in-house) -0.009 -0.010 -0.011
(0.007)  (0.007)  (0.007)
Al x Ln(data in-house) 0.038***
(0.010)
Ln(data ext.) 0.004 0.003 0.003
(0.006)  (0.006)  (0.006)
AI x Ln(data ext.) 0.005
(0.016)
AT in-house x Ln(data in-house) 0.057**
(0.023)
Al in-house x Ln(data ext.) -0.031*
(0.017)
Al joint/outsourced x Ln(data in-house) 0.034***
(0.010)
Al joint/outsourced x Ln(data ext.) 0.014
(0.018)
Constant -0.002 -0.002 -0.002 -0.018 -0.021 -0.021
(0.016)  (0.016)  (0.016) (0.017)  (0.017)  (0.017)
Observations 4360 4354 4354 4055 4055 4050

Dependent variable: TFEFP, estimated using the Levinsohn-Petrin approach.
Clustered standard errors in parentheses (by 3-digit industry level).
*p<0.10, " p < 0.05, *** p < 0.01

scenarios (Brynjolfsson et al. 2017; Haskel and Westlake 2018). While model (2) initially
suggests that sourcing A.lL inside the company is key to increase productivity, model (6)
rather shows that the underpinning data strategies explain why the in-house adoption

seems more efficient.

In summary, our results show firstly that the adoption of Al does not automatically lead
to productivity gains and that only firms that invest in internal complementary intangible
assets (data) do so. Firms that invest in building in-house data capabilities enhance the
effect of Al adoption on productivity, regardless of whether AI technologies are developed
internally or external Al solutions are used. Second, firms that have adopted Al from an
external source increase their productivity by 10 percent on average in comparison to firms
that have not adopted AI. Third, if the firms with external Al also invest in an in-house
data infrastructure, they benefit from an additional increase in productivity. Productivity
increases by about 0.037% when the investment for in-house data infrastructure increases

by 1%. Fourth, firms that choose the strategy of adopting AI through in-house devel-
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opment increase their productivity, when they simultaneously invest in an internal data
infrastructure, but not when they combine their strategy of in-house Al development with
external data. Firms that developed their Al technologies internally double the gains from
complementarity with in-house data infrastructure investments compared to external data

infrastructure.

6 Conclusion

This paper studies the role of 4.0 technologies. In a first part, based on a new classifi-
cation for 4.0 patents developed by the EPO, we examine the patterns and trends in the
emergence of 4.0 technologies in their entirety in Europe, as well as differentiated by tech-
nology groups (core, enabling and twin technologies) and sectors. In contrast to previous
literature, we focus on the digital intensity of such 4.0 patents, as 4.0 patents show strong
heterogeneity in terms of how large the share of 4.0-related technical features of the pro-
tected technology is. Furthermore, we investigate the diffusion of 4.0 technologies for the
first time. We measure diffusion by looking at European 4.0 patents and their respective
pattern of forward citations. In doing so, we differentiate whether 4.0 technologies dif-
fuse into other 4.0 or non-4.0 technology fields, to which countries and sectors knowledge

diffuses primarily.

In the second part, we examine the impact of the introduction of Al technologies on firm
performance. The novelty of our study is to examine the complementarity between the
adoption of Al and investments in complementary intangible assets, more specifically data
infrastructure. To what extent complementary intangible assets explain the productivity
paradox observed with A.I. technologies?” This question has been mostly answered at the
macro level (Brynjolfsson et al. 2017), or at the industry level for a broader set of digital
technologies (Gal et al. 2019). In this paper, we rely on an unique dataset to empirically
assess at the micro level the importance of investing in internal intangible assets (i.e. data

and software) in translating the A.I. adoption into productivity gains.

In summary, as suggested by Brynjolfsson et al. (2017), our results show firstly that
the adoption of A.L. does not automatically translate to productivity gains. We evidence
a positive effect of Al adoption on TFP if firms jointly invest in internal complementary
intangible assets. Firms that invest in building internal data capabilities significantly in-
crease the effect of Al adoption on productivity, regardless of the source of Al developments
(in-house versus external development). Second, firms that have adopted Al from an ex-
ternal source increase their productivity by 10 per cent on average compared to firms that
have not adopted AI. Third, if the firms with external Al also invest in an internal data
infrastructure, they benefit from an additional increase in productivity. Productivity in-
creases by about 0.037% when the investment for internal data infrastructure increases by
1%. Fourth, firms that choose the strategy of adopting AI through in-house development
increase productivity when they simultaneously invest in an internal data infrastructure,

but not when they combine their strategy of in-house development with external data in-
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frastructure. Firms that developed their Al technologies in-house double the gains from
complementarity with internal data infrastructure investments compared to external data

infrastructure.

We do not document a substitution effect coming from external investments in acquiring
external data and software, suggesting that complementarity goes further than generating
data inputs. This result echoes the literature on technological change that stresses the
role of organizational culture and practices in grasping the benefits from ICT technologies
(David 2000; Brynjolfsson and Hitt 2000; Aral et al. 2012; Brynjolfsson et al. 2021). Our
findings show that only firms willing to bear the costs of adapting their internal organi-
zational culture and skill-sets to A.I. predictions can fully grasp the related productivity

gains.

Our study contributes to a larger set of studies stressing the increasing importance of
intangible assets as a form of capital that deepens inequalities across firms in polarizing
productivity gains among the leader firms (Andrews et al. 2016; Haskel and Westlake 2018;
Gal et al. 2019). However, our study is not without limitations. We cannot establish a
causal link between the decision of adopting Al and its impact on productivity. Our results
must be then seen as correlation and descriptive evidence of the complementarity between
internal intangible assets and AI Further studies may address this issue with external
variations in the price of complementary assets to better establish the causal effect of
AT adoption on productivity. Moreover, our data allows us to estimate the short-run
productivity gains, ignoring potential effect in the long-run. Despite those limitations, the
large and significant effect of Al and internal intangible assets suggest a few policy and
managerial implications. More attention should be given to developing a “data culture”
within the organization and providing appropriate training to adapt the firm’s skill-set.
Providing the right building blocks in machine learning (e.g. statistics and computer
sciences) in general postgraduate education would help to avoid the polarization of the
productivity gains in the hands of a few (large) companies. Building skills and an “Al
friendly culture” are two key ingredients to develop complementary assets to those into

productivity gains in the entire economy.
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Table 10: Impact of AT Adoption on Labour Productivity Across Firms’ Strategies (OLS)

(1) (2) (3) (4) (5) (6)
Al 0.062 0.096* 0.109"**
(0.038) (0.050)  (0.040)
AT in-house 0.097* 0.129* 0.145*
(0.050) 0.077)  (0.077)
AT joint 0.056
(0.084)
AT outsourced 0.050
(0.034)
AT joint/out -0.044 0.103**
(0.052) (0.043)
Ln(data in-house) -0.018™  -0.016"*  -0.018™"
(0.008)  (0.008)  (0.008)
AI x Ln(data in-house) 0.044***
(0.012)
Ln(data ext) 0011  0.013" 0.012
(0.007)  (0.007)  (0.007)
AT in-house x Ln(data in-house) 0.067***  0.071***
(0.021)  (0.021)
AT in-house x Ln(data ext) -0.035 -0.032
(0.022)  (0.022)
AT joint/out x Ln(data in-house) 0.039**
(0.013)
AT joint/out x Ln(data ext) 0.008
(0.024)
Ln(labour) -0.003 -0.003 -0.003 -0.006 -0.004 -0.006
(0.011)  (0.011)  (0.011)  (0.011)  (0.011)  (0.011)
Ln(intermediate) 0.365™** 0.365™** 0.365™** 0.364™** 0.365"**  0.364™*"
(0.023)  (0.023)  (0.023)  (0.023)  (0.023)  (0.023)
Ln(capital) 0.054** 0.054™** 0.054™** 0.056™** 0.056™**  0.056™**
(0.007)  (0.007)  (0.007)  (0.007)  (0.008)  (0.008)
Dummy capital missing -0.289***  -0.289™**  -0.289"**  -0.294™**  -0.294"**  -0.294™*"
(0.041)  (0.041)  (0.041)  (0.043)  (0.043)  (0.043)
Constant -0.786™**  -0.786***  -0.786***  -0.769"**  -0.774*** -0.768"**
(0.163)  (0.163)  (0.163)  (0.159)  (0.159)  (0.159)
Observations 4360 4354 4354 4055 4050 4050

Clustered standard errors in parentheses (by 3-digit industry level).

*p<0.10, " p < 0.05, *** p < 0.01

Controls encompass: location, group, missing answers to data infrastructure dummies
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