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Abstract

The study of human mobility patterns is a crucially important research �eld for its impact on several socio-
economic aspects and, in particular, the measure of regularity patters of human mobility can provide a across-
the-board view of many social distancing variables in epidemics such as: human movement trends, physical
interpersonal distances and population density. We will show that the notion of information entropy is also
strongly related to demographic and economic trends by the use and analysis of real-time data. In the present
research paper we address three di�erent problems. First, we provide an evidence-based analytical approach
which relates the human mobility patterns, social distancing attitudes and population density, with entropic
measures which depict for erraticity of human contact behaviors. Second, we investigate the correlations
between the aggregated mobility and entropic measures versus �ve external economic indicators. Finally,
we show how entropic measures represents a useful tool for testing the limitations of typical assumptions in
epidemiological and mobility models.

1 Introduction

A surge of interest has been noted in the use of mobility data from mobile phones to monitor physical distancing
and model the spread of severe acute respiratory syndrome coronavirus 2, the virus that causes COVID-19. The
study of mobility can provide epidemiological relevant estimates about the extent to which people are sheltering
in place and generally moving di�erently from an usual baseline. Mobility data also give useful information about
travel patterns to help better understand the e�ect of travel restrictions and the risk of importation from other
locations. Human mobility and, subsequently, social interactions can be seen both random and regular, showing
an intrinsic complexity which can be captured by a physics or information theory based measure for the �uctu-
ations as the entropy which can help in understanding regularity of individuals’ visiting patterns. In particular,
there is substantial value in having a metric, that captures degree and patterns of employees’ and consumers’
mobility since the commercial value of understanding motion is substantial. Magnitude and patterns of mobility
turn out to be powerful predictors of human behavior, speci�cally behaviors that businesses seek to drive. In
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this work we study features of individual mobility that can be related to entropy measures and so capturing the
relationship within human mobility patterns in the context of socio-economic Covid-19 pandemic crisis. Cellular
phone data o�ers an ubiquitous opportunity for scientists to observe how people re-act, move and respond to
external in�uences like a epidemiological shock. Such data can be used as measurement of interactions of in-
dividual persons in a social context. Studying the e�ects of social distancing measures on the evolution of the
epidemic di�usion, as in the case of the Covid-19 pandemic, has been undergone into controversial academic and
political positions. There are many factors which can in�uence the e�ectiveness of spontaneous or mandatory
behavioral social responses which are di�cult to be considered separately as de�nitive evidences against or in
favor about the e�ectiveness of non-pharmaceutical interventions. They need to be considered together to de-
scribe a composite e�ect on contagious transmission. Among the social-related factors which have an impact
on the spread of airborne diseases like the Covid-19 case, we �nd human mobility, inter-personal distance and
population density and usually in epidemiological modeling, such composite e�ects are essential summarized as
interaction rate among individuals. Under a collisional modeling of human contacts we can point out a useful
statistical and analytical relation between entropy measures and some of the social distancing variables where
mobility plays a crucial, but not unique, role. We then show how an entropy-based approach can provide a better
insight into the analysis of socio-economic indicators. In particular, we start from mobile phone data at US state
level, using two mobility measures: radius of gyration, the characteristic distance traveled by an individual, and
mobility entropy, the diversi�cation of movements over her locations. Human economic behavior is a�ected by
human geography since constraints on mobility determine if people can go to work and what they can buy and,
in turn, shopping choices drives people movement. So, describing consumer patterns can be important both for
modeling the dynamics of a market, and for discovering predictability of future behavior at the individual level.
Economic models of consumption incorporate constraint and choice to varying degrees. We compare the aggre-
gated mobility measures with some socio-economic indicators measuring as employding, �rm revenues, energy
demand and the coincidence index. Performing a correlation analysis, we observe a relationship of such eco-
nomic indicators against both mobility and entropy-based variables. Such correlations shows a varying intensity
according to the drivers of each economic indicator. In fact, other than the mobility, very important demographic
variables are repredented by population density and personal space of individuals (i.e. interpersonal distances).
However, those variables are not so unambiguously traceable as real-time data since they presents some intrinsic
di�culties in collecting proper data to be used directly in our analysis. However, we prove that they are em-
bedded into the visiting patterns encapsulated in the mobility entropy. As �nal result, our analytical analysis is
grounded on a kinetic collisional model where many mobility and demographic variables are used. By the way,
such theoretical framework rests on some fundamental assumptions, the most important of which consists in the
hypothesis of random and uncorrelated contacts. By using the concept of information entropy we can check how
much evidences from real data deviate from such erratic assumption of social movements, so evaluating in what
extent aggregated mean �eld model works are reliable in describing real world dynamics.

2 Related Literature

The study of human mobility and its regularity is encoded in an interdisciplinary �eld that aims to understand the
intrinsic properties of human movements as well as the mechanisms behind the observed patterns. The concept
of human mobility encompasses various dimensions of human travel at both individual and group levels. In
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fact, there is a very important emergent literature on an interdisciplinary research about regularity of human
mobility. Some theoretical studies as summarized by Barbosa et al. [6], Gallotti et al. [24], Osgood et al. [54] who
discussed the study, understanding, and modeling of human mobility. In particular the study of human mobility
has received considerable attention in terms of indicators based on the concept of entropy directly applied to
real world mobility �ows as discussed by Kulkarni et al. [43], Lu et al. [48], Song et al. [66]. Mobility is usually
associated as the average distance traveled by individual or other alternative de�nition, and it ,in fact, represents
an important proxy measure of social distancing. As consequence, mobility contraction has represented one of
the crucial social distancing measures for restricting population movement thus reducing the number of contacts
and consequently reducing the transmission of SARS-CoV-2, see Badr et al. [5], Bonaccorsi et al. [10], Cintia et al.
[18], Gatalo et al. [25], Nouvellet et al. [51], Vanni et al. [70].

Despite the fact that human mobility is seen as a crucial property of a population, it is actually only one ingredient
of what in general one could see as human movement patterns, for example, the role of population density. Recent
studies has proven controversial results on the role of population density on the spreading and/or death rate of
the population density Bhadra et al. [9], Carozzi [15], Gerritse [27], Rader et al. [61], Wong and Li [76]. From one
side, the individuals living in high population density areas have a higher probability to come into close contact
with others and consequently any contagious disease is expected to spread rapidly in dense areas. So, in principle,
population density may a�ect case and death rates since people have contacts in closer proximity to each other so
that the virus SarsCov2 is transmitted through droplets proximity to other individuals is one of the risk factors. As
consequences, in places where it is more di�cult to practice social distancing, like densely populated urban areas,
one expect to observe higher incidence. On the othr hand, there are some states where rural communities are
actually the ones experiencing disproportionate infection rates often because of local outbreaks and exacerbating
underlying conditions. In fact, despite the direction of relationship between epidemic di�usion and population
density is ambiguous, there are other mediating factors that might a�ect the behavioral responses to the pandemic,
which can itself a�ect the spread and severity of the outbreak.

Many researchers Cartaud et al. [16], Chu et al. [17], de Rosa and Mannarini [20], Gokmen et al. [30], Kishore
et al. [38], Welsch et al. [75], Xu et al. [77], have investigated the e�ects of physical distance on the Covid-19
disease transmission, since the risk for infection is highly dependent on distance to the individual infected and
the type of face mask and eye protection worn. It is well assessed how there exists a signi�cant and negative
(opposite) relation between national interpersonal distance preferences and COVID-19 spread rate. The inter-
personal distance is the object of proxemics study of human use of space and the e�ects that population density
has on behaviour, communication, and social interaction.

On the other hand, the rise of widespread computing techniques provides an up-to-date and accurate way to
detect human movements at various temporal and spatial scales. This allows for acquisition of new knowledge
about important aspects of human mobility patterns, so that the resulting location datasets can be then used to
study and model user mobility behaviors. Bonato et al. [11], Cintia et al. [18], Luca et al. [49], Pappalardo et al.
[58]. Real-time user locations are typically collected using the global positioning system (GPS), call detail record
logs (CDR) and wireless-LAN (WLAN). In fact, recording human activities can yield high-�delity proxies of socio-
economic development and well-being. However mobility data have their biases and limitations, for example they
can be more representative of a younger and more a�uent population, but at the same time another data stream
could under represent those living in rural areas.
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The analysis of human regularity of mobility during the outbreak of an epidemic is crucially important in social
sciences and economics because of the strong interaction between aggregate demand and the dynamics of an epi-
demic so that the epidemic trend a�ect the consumer’s behavior and, in turn, the demand trend a�ects the amount
of physical contacts across individuals and hence the epidemic incidence Heroy et al. [33], Jiang et al. [37], Kramer
and Kramer [40]. The rising aggregate demand increases the contact rate and therefore the exposure to a virus in-
fection. On the other hand, rising infection lowers aggregate demand because of reduced household spending. On
the contrary, higher epidemic incidence depresses aggregate demand, which lowers the contact rate and reduces
infections. Furthermore, some recent studies have shown that human movement patterns are strongly associated
with regional socioeconomic indicators Avery et al. [4], Basurto et al. [7], Brodeur et al. [13], Papageorge et al.
[57]. In particular, direct and indirect e�ects of lockdown measure has trigger economical sequential adjustment
process in response to shocks to productive capacity (supply shocks) and/or to �nal demand (demand shocks).
There already exists a rapidly growing literature examining the economic e�ects of Covid-19, with joint analyses
of economic and epidemiological dynamics as well as of the possible interconnections between supply and de-
mand shocks originating in the pandemic Eichenbaum et al. [22], Flaschel et al. [23], Guerrieri et al. [31], Reissl
et al. [63]. The epidemic has had a simultaneously impacting both the supply and demand sides of the a�ected
economies, mostly caused by mobility contraction seen as movements reduction, physical distancing increase
and con�nement policy of stay-at-home orders. Such mandate measures can bee seen as shocks a�ecting the
sectoral availability of labor, constrain the output that can be allocated to �nal demand and to other sectors, af-
fecting demand for non-labor inputs and, possibly, creating bottlenecks in the production of downstream sectors.
The economic and social shock presented by the Covid-19 pandemic has reshaped perceptions of individuals and
organizations about work and occupations, resulting in changes of occupational supply and demand and changes
in occupational perspectives on working from home. Moreover, employment rate is strongly related with ag-
gregated measures of consumer spending Amadeo [2], Dynarski and She�rin [21], Krumme et al. [42] especially
during times of crisis.

As a further consequence, the mobility reduction, physical isolation, economic di�culties (as unemployment)
have an important e�ect on the individual health and it can represents in its turn a social and economical problems
as well, Auriemma and Iannaccone [3], Brenner and Bhugra [12], Kroczek et al. [41], Newbold et al. [50], Welsch
et al. [74] where there exists a relationship between the extent of physical distancing and lost income in society.
So if from one side social distancing measures can safeguard public health, they also can profoundly impact the
economy and may have important indirect e�ects on the society, posing also serious challenge to behavioral
norms. For example, a close interpersonal distance increases emotional responses during interaction and has
been related to avoidance behavior in social anxiety. Mobility data are also crucial to understand climate change
and migration patterns induced by climate extremes in order to understand the long-and short-term e�ects of
climate change on vulnerable populations, Gioli et al. [28], Wang and Taylor [71].

3 Model and Results

Entropy captures the degree of predictability characterizing a time series, and it was originally introduced to
explain the inclination of intensity of heat, pressure, and density to gradually disappear over time. Entropy is a
signi�cant, widely used and above all successful measure for quantifying in-homogeneity, impurity, complexity
and uncertainty or unpredictability. We will focus the attention on Entropy variable which allows to character-
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ize many aspects of population dynamics such as human mobility, population density, inter-personal distance
(proxemics) and minimal movement trend of individuals. In this terms entropy can also be seen as measure of
attractiveness and socioeconomic complexity.

Table 1: Data Repositories at state US level

Mobility Data
Camber Systems Social Distancing Reporter [14]- Entropy & RoG (daily)
SafeGraph Data Consortium [34] - Visited locations & Distance traveled (daily)
U.S. Census Bureau [69] - Populaton density (annual)

Economic Data
Economic Tracker [53] - Employment, Consumer Spending & Firms Revenue (daily)
U.S. Energy Information Administration [1] - Energy Demand and Production (daily)
Federal Reserve Bank of Philadelphia [60] - Coincidence index (monthly)

The importance physical distancing practices is directly related with the epidemiological trends since mobility
and population gatherings are essential features for contagion di�usion, and as expressed in , one can write the
reproduction number and the economic damage of the e�ects of the mitigation policy to contrast the epidemic
as:

Rt = f(st,Bt) Epidemic repreduction number (1)
Dt = f(ωt,Lt) Economic damage function (2)

As regard with the epidemiological side, and following Palatella et al. [56], Vanni et al. [70], the reproduction
number is a function of st which is the share of susceptible population (not immunized individuals), Rt0 is the
reproduction number at the beginning of the observed period, and Bt is the transmission rate function which
depends on variables which describe the interaction frequency of contacts and the rate of becoming infected
after a contact. Furthermore it also depends on the infectious age of individuals in the contagion process. On
the other side, the economic damage function Dt is a not well speci�ed function which would account for the
economic impact of the pandemic as discussed Bellomo et al. [8], Reissl et al. [63], where, speci�cally, the damage
(or loss) function depends on the intensity of the lockdown Lt (social distancing restrictions) which is inversely
related with the interaction patterns in society. We put the basis to connect the transmission rate Bt to the
lockdown intensity Lt through a dashboard of mobility variables, since a reduction in social movements have
impacts both on the epidemiological side and the economical one. A possible candidate for a such connection can
be found in the entropy-based metrics. Finally, ωt represents the speci�city of the particular economic indicator
under investigation and it captures the sensitiveness of that particular economic indicator to mobility and social
distancing changes.

In the present research paper, we express the concept about how the transmission rate of contacts Bt can be
expressed in terms of social distancing measure ans consequently in terms of entropy. On its turn, we shed
lights on the crucial role of information entropy of mobility patterns in relation between lockdown and economic
activity. We make use of analytical tools supported by statistical evidences which relies on the use of large datasets
for both mobility and economic data, as reported in Table 1.
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3.1 Mobility pattern estimates

Thus the entropy S(X) is equal to the amount of information learnt on an average from one instance of the
random variable X . It is important to highlight that, the entropy does not depend on the value that the random
variable takes, but only on the probability distribution p(x). The probabilities of di�erent values can be leveraged
to reduce the number of bits needed to represent the data if and only if the variable has non-uniform distribution.
Thus, entropy can also be de�ned as the measure of compressibility of the data, or a measure that de�nes the pre-
dictability of a single random variable. Lower entropy therefore generally signi�es higher predictability, meaning
that an individual’s time spent at their signi�cant locations is highly predictable. Conversely, high entropy sug-
gests that predicting an individual’s location is di�cult. Therefore, the lowest entropy would be achieved by a
user who spends the exact same amount of time in the same places in every time window. You can stay in a small
area but be moving unpredictably or traverse a large area very predictably. Someone just staying at home, or just
going to work from home, is extremely predictable (though they may be traveling far from home). The entropy
metric tracks how erratic or how predictable a person’s movement is. Entropy will be higher when someone
moves around with less consistency, and it will be lower when they move around with more predictability.

In the study of human mobility, random entropy, measures the uncertainty of an individual’s next location as-
suming that this individual’s movement is completely random among L possible locations, and is calculated as:

Srand = 〈logLi〉N (3)

This, di�erently, captures the predictability of each user by assuming that the person’s whereabouts are uniformly
distributed among Li distinct locations.

If the individual’s movement among N possible locations follows a certain probability distribution, the entropy
of this process is then de�ned as:

SU = −

〈
Li∑
k=1

pk log pk

〉
N

whereLi is the number of distinct locations by each of the individuals, i = 1 . . . N , and where pk is the frequency
of the user’s visit to their k-th location (k is the index of all locations that the user visits). In particular, we
plot the uncorrelated Shannon Entropy measure for some US states in Fig.1. Shannon entropy is high when an
individual performs many di�erent trips from a variety of origins and destinations; it is low when he performs a
small number of recurring trips. The uncorrelated Shannon entropy takes into account the number of di�erent
locations visited as well as the proportion of time is spent at each location, so decreasing the uncertainty of the
trajectory respect to the de�nition of the random entropy. Let us notice that it is always true that SU ≤ Srand

where the equality holds when the process is completely random.

Additionally, we could also considered movement patterns where one considers the frequency of the visited loca-
tions and the order as well. However, we have used data provided by Camber Systems database CamberSystems
[14] and partially from SafeGraph [34], from which it is possible to report both the random and the temporal
uncorrelated Shannon entropy in meters of GPS persons’ devices. However it is not possibile at this stage to
recover individual patterns for the periods of Covid-19 pandemic, which could allow us to study the change in
time-correlated paths of individuals, see A.3 .
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Figure 1: Median Uncorrelated Shannon entropy of individuals’ movements, data courtesy of Camber Systems CamberSystems [14].

Analytically we can compute the entropy from a collisional model where individuals move in a region much larger
than the their interaction regions and after some calculations, see A.1, it is possible to write the con�gurational
entropy as an approximation of the random entropy:

E[Srand] ≈ 1 + log

(
1

δ
− 1

δ1

)
for δ � δ1 (4)

where δ = N/A is the (e�ective) population density and δ1 is de�ned as the minimal area occupied by a single
individual (a space where no other individual is present but you) since δ1 = 1/πr2 where r is the interaction ra-
dius which is inversely proportional to the typical interpersonal distance Sorokowska et al. [67]. More precisely,
it corresponds to resolution of GPS on revealing such area. Moreover, social distancing measures can modify the
interaction radius and so, consequently, the value of the entropy. More importantly, in our representation, the
variable r can be a�ected by other factors as cultural, structural, climatic,environmental, etc. However, the con-
�gurational entropy is just an approximation of the random entropy since we cannot know the exact number of
urban population density as fully discussed in B. As a consequence we cannot directly use the population density
reported by US Census Bureau U.S. Census Bureau [69], which are calculated in terms of physical and geographic
region and not the e�ective area where people interact. As possible improvement is represented by the notion
of population weighted density that is the population density that the average person experiences, Ottensmann
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[55], measuring the density at which the average person lives. Furthermore, the con�gurational entropy should be
discounted for the people staying in lockdown (which does not move so they do not participate to the collisional
movements) so capturing the change in the interaction radius r during the evolution of the epidemic. However,
de�ning the population density δ is actually a di�cult task since we should map the number of individuals in
an e�ective region of interaction. We do that by using the number of active devices reported by Camber System
database. Despite that, we know that in the limit of validity of our collisional model assumption we know that
Srand ≥ SU where the equality holds if the probabilities pk are equally probable (perfect disorder limit)1. For
example we show in Fig.2 all those entropic measures in some USA states. Despite the fact that such entropy
measures looks similar in their mean value, there is signi�cant di�erence in the trend behavior between the ran-
dom and the uncorrelated Shannon entropies. In all the cases reported, we notice a change after the beginning
of March 2020: the random entropy has increased meanwhile the uncorrelated one exhibits an opposite trend.
A possible interpretation is that, after the Covid-19 outbreak individuals increased the number of stops (visited
more distinct locations), but at the same time they have moved less uniformly among di�erences locations they
have stop by. This possibly re�ects the fact that people have kept moving but the spend more time in important
places like essential workplaces, and less time in visiting non-necessary locations (bars, restaurants etc...). By the
way, during the year the uncorrelated Shannon entropy have recovered its original value, otherwise the random
Shannon entropy has maintained is new mean value, which according to our con�gurational interpretation model
the density of active individuals has diminished.

The Shannon entropy S(k) is equal to the amount of information learned on an average from one instance of the
random variable k, but it does not depend on the value that the random variable takes, but only on the probability
distribution p(k). The probabilities of di�erent values can be leveraged to reduce the number of bits needed to
represent the data if and only if the variable has non-uniform distribution. Thus, entropy can also be de�ned as
the measure of compressibility of the data, or a measure that de�nes the predictability of a single random variable.
Lower entropy therefore generally signi�es higher predictability

E[SU] ≈ log
µ

µ1
+ log

δ1

δ
(5)

where µ is the aggregate mean mobility and δ is the population density of people actively participating in the
social interaction. Then, µ1 is the smallest detectable mobility of a single individual (namely device), and the δ1

is the personal space of an individual which is considered as the average social area for each individual.

As regarding with mobility variable, the median radius of gyration in meters of devices which stayed in one
location overnight. This metric provides a summary of travel that incorÂŋporates both the number of trips and
the distance of every trip. The radius of gyration for user u, is calculated �rst taking the root mean squared
distance of a user’s movement across space over a given time window from their center of gravity:

r(u)
g =

√√√√√ 1

L
(u)
i

L
(u)
i∑
i=1

(r
(u)
i − r̄(u))2 (6)

1Precisely, SU is a better measure of the entropy respect to Srand, as it considers the mobility spatial pattern revealing the uneven
frequencies of the visits. They are equals only if all of the Li distinct visited places, k, were occupied with uniform probability pi(k) =

1/Li by the individual i. However all those entropy measures still ignore possible temporal patterns which can be due to the relative
position of the individuals, which is taken into account by the information entropies like real and conditional entropies, resulting in
SH ≤ SU.

8



Figure 2: Comparison between the various implementation of Entropy of individuals’ movements, data courtesy of Camber Systems
CamberSystems [14] and U.S. Census Bureau U.S. Census Bureau [69] for population data.

where r(u)
i represents the i = 1 . . . L

(u)
i positions recorded for the device u and r̄(u) is the center of mass of the

trajectory. For each user, r(u)
g is interpreted as the characteristic distance traveled by user a when observed up

to time. Let us notice that the radius of gyration in a pure di�usive erratic movement should follow rg(t) ∼
√
t

in the short time period within a day Liao et al. [45], Liu et al. [47]. The individual radius of gyration is di�erent
from the average travel distance, because an individual moving in a comparatively con�ned space will have a
small radius of gyration even a large distance is covered. On the other side, the radius of gyration can be larger
than distance traveled if someone travels with small steps but in a �xed direction or in a large circle. To calculate
the aggregated radius of gyration RoG for a group of devices in a geohash, for every user u, one generates
their home region A as the region in which they spend the most time in their location set. Then, aggregate this
value across a population in a given region and provide an average and percentiles. This is the metric used in
CamberSystem CamberSystems [14] database. In practice, the radius of gyration represents the vital diameter
within which the user is most likely to be found in the observation period and it represents a way to describe
human mobility as an aggregated measure of social movements. Since a low radius of gyration corresponds to
locations that are close to each other, meanwhile a large radius of gyration corresponds to locations which are
far apart from each other. Moreover, people who live in cities may have a lower radius of gyration because they
are covering less ground. People who live in rural areas may have a higher radius of gyration because they
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travel greater distances to achieve the same goals. In Fig.(3) we plot the percentage change of both the radius
of gyration and the shannon entropy for some of the US states. It is clear how despite the fact that they looks
similar, they have pretty di�erent trends showing how they are correlated except for certain omitted variables,
which we consider to consist in population density and inter-personal distance. We have already mentioned that
these last two variables are di�cult to evaluate on a daily basis and only rough estimation are possible.

Figure 3: Percentage change of Radius of gyration of individuals’ movements and the Shannon uncorrrelated entropy repsect the baseline
of Jan 2020. Data courtesy of Camber Systems CamberSystems [14].

Mobility data is the only reliable predictor for the entropy variable, since the population density δ and individual
space δ1 are sloppy variables which cannot be measured with the same precision and frequency. So we can write
the Shannon entropy in terms of mobility to be related by the following linear regression relation with time
speci�c �xed e�ects, which omitted variable bias caused by excluding unobserved variables (population density
and proxemic space) that evolve over time but are constant across entities:

Si,t = β0 + β1 logµi,t +

T∑
j=2

τjBj,t + εi,t (7)

where τj is the coe�cent on time speci�c dummy variable Bj,t, the latter equal to one at year j, zero elsewhere.
In our example T = 3, for three di�erent periods of 30 days, as reported in Fig.4, namely before the pandemic,
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during the �rst outbreak and, last, during the summer of 2020. This model eliminates omitted variable bias caused
by excluding unobserved variables that evolve over time but are constant across entities. The constants are in
practice evaluated from data since there is no straightforward interpretation of all the variable at play. So we
can perform panel regression analysis for three periods of time over all the 50 US states as in Tab.2, that reveals
the e�ects of time speci�c dummy variables and the strong (cor)relation between Entropy and human mobility
as predicted by the theoretical prediction eq.(5). In practice one can evaluate the population density variables

Estimate S.E. tStat

β0 -5.93∗∗∗ 0.23 -25.37
β1 0.88∗∗∗ 0.01 56.91
τ2 0.64∗∗∗ 0.04 15.01
τ3 0.32∗∗∗ 0.04 7.62

Table 2: Panel regression analysis for 3 periods of time such as before the outbreak, during the �rst wave, and the end of the �rst wave.
Number of observations: 150, Error degrees of freedom: 146 Root Mean Squared Error: 0.21 R-squared: 0.96, Adjusted R-Squared 0.96.
∗ ∗ ∗ indicates a p-value<0.001.

log δ1/δ as from the intercepts from regression analysis as in Fig.4. In theory, it is possible to use the �xed e�ects
regression analysis to remove omitted variable (i.e. population density) bias by measuring changes within groups
across time, usually by including dummy variables for the missing or unknown characteristics. We can see how
the density variable has increased the regression intercept after the Covid-19 outbreak, but then going closer to
the original value during the summer where gathering restrictions released, since the perceived density increased.

Figure 4: Panel regression analysis with three dummy variables related to temporal �xed e�ects in di�erent periods of the year 2020.
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3.2 Statistical analysis of economic trends

The economic consequences as the results of restrictions have included increased unemployment, �rm closure,
stock market volatility and strain on government public �nances. Typically, the epidemic as a negative shock
on the labor force, so the number of Covid-19 incidence has a negative feedback on the dynamics of economic
activity. We are interested in analyzing human mobility behaviors and how they might be potentially related to
short-term regional income, employment rate and other socio-economic factors, [10, 59, 73]. We investigate the
correlations between the aggregated mobility and entropic measures against the �ve socio-economic indicators.
As already discussed by Pappalardo et al. [58], we show how the Shannon entropy reveals stronger correlations
with some socio-economic indicators than genuine mobility (in terms of radius of gyration), this can be due by
the fact the entropy is a variable which embodies more aspects of social movement trends including mobility.
Entropy, in fact, can be seen as more related to decision making choices than the simple mobility indicator, since
it represents an aggregated measure of regularity respect the ongoing socio-economical patterns.

In our preliminary study we select some daily and monthly regional economical indicators which have been al-
ready analyzed in the research of the short-term impact of Covid-19 epidemic on the economy Flaschel et al.
[23], Gene Falk [26], Guerrieri et al. [31], Reissl et al. [63] namely: employment, consumer spending, electricity
production, �rms revenues and the coincidence index. We assume that during the Covid-19 crisis the mobility
restriction and all the other social distancing interventions are considered as a shock to the economic activities,
so that tahy could be considered the main drivers of economic trends. At this point, we can assess the statistical
measure which determines the association of those indicators against mobility and entropy variables for each
state. We do that measuring the linear relationship through the correlation coe�cient so we can highlight the
aggregated extent to which each of the economic time series move together with the mobility and entropy. We
show that some of the economic series are stronger correled with the entropy respect with mobility. Essentially,
we think, it can be due to the di�erent content of information in each economic variable and to the fact that
entropy embodies a more complex information than just the mobility that for some economic indicator can be
an advantage for other indicators it is not. As regards with the impacts on labor market, employment rates in
the United States fell dramatically during the �rst months 2020 as the repercussions of the COVID-19 pandemic
reverberated through the labor market. However, the pandemic-related economic pause and lockdown di�eren-
tially a�ected the employment opportunities of persons working in di�erent sectors. Workers whose jobs could
be performed remotely from home, continued to work from their home o�ce, meanwhile, workers who provided
essential services (health care professionals and grocery store clerks) kept their usual work routine. In particular,
regions with economies that rely on the movement of people (like tourism) faced substantially higher unemploy-
ment at the end of 2020 than regions with core industries based on the movement of information. Population
mobility is strictly related to consumer decisions about what to buy, how much to buy, and when to buy among
many goods and services. They do not only satisfy their own needs, but also determine how much of which goods
and services ultimately will be produced. The production of these goods and services creates jobs in all sectors
of the economy. As regard with consumer spending perspective, we have picked the only high frequency data
which has to do with electricity demand. Business closures and changes to normal routines related due to policy
restrictions have caused electricity demand to decrease in March and April compared with expected demand,
after accounting for seasonal temperature changes. Such indicator measures how much electricity each end-use
sector consumes and the varying e�ects of COVID-19 mitigation e�orts on the sectors. We have used data of
demand for electricity as from reoprted by IEA [1] of regional electricity production in megawatt-hours units.
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Figure 5: The economic indicators are monthly reported. Data courtesy of Camber Systems CamberSystems [14], U.S. Bureau of labor
statistics of Labor Statistics [52], Federal Reserve Bank of Philadelphia [60] and Electricity demand EIA [1], for mobility, labor, economic
and energy data respectively.

Ultimately, we have selected monthly coincident index for each of the 50 state as produced by the Federal Re-
serve Bank of Philadelphia [60]. The coincident indexes combine four state-level indicators to summarize current
economic conditions in a single statistic. These indexes are monthly indicators of economic activity for each of
the 50 U.S. states, based on a composite of four widely available data series on state conditions: total nonfarm
payroll employment, the unemployment rate, average hours worked in manufacturing, and real wages and salary
disbursements.

In Fig.5 we show how economic indicators seems to be better aligned with entropy rather then the mobility espe-
cially for US states as New York state and other US states where entropy and mobility have opposite trends at the
beginning of 2021. In states, as California, where the two mobility indicators have similar trends, the correlations
between the mobility and the economic indexes are more indistinguishable. However, due to the complexity of
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the subject, our empirical exercise represents only a qualitative and preliminary investigation since we have fo-
cuses our research study on setting a robust and quantitative description of population mobility, so putting the
ground for further and more rigorous studies which can connect socio-economical indicators to mobility ones.

At this point we want to measure the relationship between each of the selected economic indexes versus the
mobility and entropy variables for each of the 50 US states as reported in Fig.6. We see how the entropy is sys-
tematically highly correlated to employment and coincidence index than the mobility in almost all the states.
Di�erently, mobility (as RoG) is more correlated with energy demand. This is summarized in the average correla-
tions as reported in table Tab.3 where we have computed the median correlations and their con�dence intervals.
We observe that Entropy shows a signi�cantly higher degree of correlation against employment and coincidence
index than mobility. This can be due to a more complex nature of the entropy which accounts for mobility to-
gether with other social distances measures as indicator of regularity of locations patterns. Meanwhile mobility is
more strongly correlated with energy demand, and this can be due to the fact that the consumption of electricity
is more sensitive to a change in movements of individuals rather then some sort of regularity of those.

Indicator Mobility C.I. Entropy C.I.

Employment 0.55 [0.43, 0.64] 0.64 [0.53, 0.72]

Consumer Spending 0.43 [0.29,0.56] 0.65 [0.48, 0.74]

Energy Production 0.46 [0.32,0.59] 0.36 [0.16, 0.56]

Firms Revenue 0.51 [0.24,0.69] 0.34 [0.26, 0.60]

Coincident index 0.61 [0.51, 0.69] 0.69 [0.61, 0.75]

Table 3: Correlation coe�cient among all the 50 US states. Median values of the correlation coe�cient and their 10th and 90th percentiles.
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(a) Employment (b) Consumer Spending (c) Energy production

Figure 6: Correlation coe�cient for each state between the economic indcators versus the mobility (light thin bars) and uncorrelated
entropy (dark thick bars) for two di�erent economic indicators: (a) employment rate, (b) consumer spending and (c) energy consumption.
Longer bars indicate a stronger correlation between the time series.
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(a) Firm Revenues (b) Coincidence Index

Figure 7: Correlation coe�cient for each state between the economic indcators versus the mobility (light thin bars) and uncorrelated
entropy (dark thick bars) for two di�erent economic indicators: (a) Firms revenues and (b) Coincidence index. Longer bars indicate a
stronger correlation between the time series.
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3.3 Validity and limitations of model assumptions

Let us now go into a more �ne-grained analysis of the visiting pattern structures, namely the probability dis-
tribution of the number visits that each census block have received in a day. In order to obtain a more realistic
estimate for the visiting probability p(k), we have needed to use SafeGraph Inc [34] Data consortium, which
provides the number of devices in census block group that stopped in the given destination census block group
for > 1 minute during the time period. In Figs.8 we show how the distribution has changed during the epidemic
period, groing from a clear power law tailed distribution in pre-pandemic period to a more disrupted tail where
reorganization of interaction patterns has a�ected the distribution of how locations are visited (as also distances
traveled). From the previous empirical results on mobility, we could assume a generalized Pareto distribution for
the visiting locations:

pk = λ

(
1 +

k − k0

αλ

)−(1+α)

for k > k0 ≥ 1, α > 0, λ > 0 (8)

which shows power law tails with slope of α, such distribution has �nite mean when α > 1 and it has �nite
variance when α > 2.

Let us notice that for the particular case when 1/α = 0 the probability density becomes exponential pk =

λe−λ(k−k0). In the generalized case, the Shannon Entropy is:

S
(gp)
U = 1− log λ+ 1/α = 1/α+ S

(exp)
U (9)

so larger than the exponential distribution entropy. So the factor 1/α represents roughly the discrepancy between
the observed entropy and the theoretical one.

In our theoretical representation we miss two important real life evidences, �rst a spatial heterogeneity is much
larger than the one represent in our model but captured by the empirical Shannon entropy from data, as discussed
in the appendix. Second we miss both a theretical and emprical temporal heterogeneity of individuals’ paths. The
current mobility models are based on an assumption that human movements are randomly distributed in space
and time, hence are approximated by a Poisson process, however recent studies have swhon the non-Markovian
nature of population movements, thus possessing a memoryless structure. Respect to the random di�usion of
particles, human daily travel has a higher degree of regularity, so an higher predictability of individual movements
Song et al. [66]. This happens since individuals in urban travel are purposeful and socially contextualized, so they
have di�erent destination choice strategies. In particular, studying the erraticity of people movements gives a
better understanding of the limitations of our model and consequently in a better interpretation on the use of data
like mobility and social distancing, as well as the necessity to calibrate the model calibrating such discrepancies.
A crucial point while using mobility data is that we assume they are a good proxy for relative velocity of people in
the erratic movements in the collisional framework. In order to be true, we essentially assume that the movements
of individuals are uncorrelated so that the mean relative velocity among colliding individuals is proportional to
their absolute speeds (Maxwell-Boltzmann random mean square velocity condition). From the kinetic theory of
gases, the general form of the probability density function of the speed is of the form p(v) = cve−cv

2/2 where c
is the inverse of the variance that is related to the concept of temperature derived from the kinetic energy in the
collisional theory (namely the 2D Maxwell-Boltzmann Distribution). Let us observe that using SafeGraph database
we make use of another proxy for mobility which is the evaluation of distance traveled metric, so measuring the
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(a) (b)

(c) (d)

Figure 8: Complementary cumulative function of the frequency of visiting in a log-log plot. Using real world data by Safegraph Inc
[34] for New York city county for the dates on the legend. So that visiting probability p(k) has a clear fat tail distribution which can be
represented through a generalized Pareto distribution.

amount of movement occuring within a population, as reported in SafeGraph database Inc [34]. Despite RoG and
distance-traveled measures are not totaly equivalent, they are considered to be both proxies of human mobility
since probability of displacement and frequency of the radius of gyration show almost identical trends Hawelka
et al. [32]. In our theretical framework, distance-traveled correspond to the velocity of each individual meanwhile
RoG is represented as the mean square velocity. Those quantity are proportional within our collisional model.
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At this point we evaluate the agreement of theoretical speed distribution p(v) against the true distribution of
distance traveled per day p(µ) evaluated from real data as reported in SafeGraph [34]. As reported in Fig9, the
two distributions have similar expected value E[µ] ' E[v] but the show a clear di�erence in the tail, since the
observed complementary cumulative density function of mobility show a clear power law tail in contrast with
the exponential trend of the theoretical Maxwell-Boltzmann distribution of velocity. This fact stresses how our
aggregate description of a mean �eld variable ov mobility is well replicated by the collisional model. On the
contrary such model does not capture the important mobility heterogeneity among individuals (as long range
travelers). Another important result is about what we call the ergodic assumption of movements, that essentially

Figure 9: Complementary Cumulative denisty function of di�erent variables x taken from SafeGraph datbase in the case of New York
county. Such result con�rms the fairly good approximation of the ergodic assumption between the distribution of visited locations and
speed distribution. By the way the theoretical prediction fails to describe the heavy tail behavior since we only rely on a population with
homogeneous behaviors, so exponential distribution of the speeds.

comprehends the fact that the movements of individuals are equivalent to the frequency of location visited by
those, so that p(µ) ∼ p(k). Such property is asymptotically con�rmed in our analysis, for example again in Fig.9
where we see that those probabilities have an identical power law distribution shape, except at short scale where
data collection issues are involved. In fact, in SafeGraph repository the number of visits received by each census
block is computed indirectly from the information of how many other census blocks have been visited by devices
on a considered census block. So we have a poor estimation of places which are visited only few times, because
they are included in larger census blocks.

Moreover there are other two intrinsic assumptions in the collisional model: �rst, each individual performs
markovian trajectories (memoryless assumption) and second, a part from direct collisions, each individual does
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not in�uence the trajectory of others (short-range interactions). Those assumptions exclude the presence of long
range auto-correlations and cross-correlations of each individual trajectory. Considering such e�ects will require
a study of individual trajectories over time and so introducing other de�nition of information entropy, as the Kol-
mogorov entropy as discussed in the appendix. When the short correlation assumptions are not ful�lled which
contribute di�erently over time to the mean relative velocity. At this point, observing at Entropy measures we
can realize that there is such change in erratic behavior, so the necessity to calibrate again the model in order
to make mobility data consistent with our hypothesis in the model. In particular, in reality if one looks at the
distribution of the inter-event times associated with the individual locations depicting long-tailed temporal dis-
tribution, so that most locations are visited at high periodicity, while few locations encounter long waiting times.
At this stage, se do not have data on individual trajectories during the time period of the pandemic. However,
such limitations are mainly important at the level of individual paths. In our mean �eld study, we have focused
on aggregate mobility so that are analytical predictions are fairly e�ective in describing observed overall mobility
patterns.

4 Conclusions

In this paper, we were interested in analyzing people’s heterogeneous traveling behaviors and how they might
potentially relate to regional unemployment rate and other socio-economic factors. The e�orts to mitigate the
Covid-19 pandemic has forced many governments to impose lockdown policies for the population. However,
such mobility restrictions have come at signi�cant social and economic cost. The analysis of entropy measures
of mobility patterns of real-time datasets represents a promising reliable and e�ective tool for monitoring human
mobility patterns. This plays an important role in studies exploring migraion �ows, tourist activity as well as for
examining the spread of diseases and for epidemic modeling. Moreover, home con�nement and restrictions on
production have a�ected the behavior of individuals and economic activity leading to a shift in typical human
behavior resulting in a crumple of economic predictions. Individuals’ interpersonal distances, human mobility and
population density are the most important factors which can either increase or decrease the contagion di�usion
of an airborne transmissible disease as the Covid-19 and at the same time they have an impact of preferences for
products purchase decisions, posing a question of how individual heuristics might form large-scale patterns. In
fact, Covid -19 pandemic, along with the associated lockdowns, mobility restrictions and physical distancing rules,
has altered labor market structure, production chain and spending patterns of consumers a�ecting so the supply
of and demand for many products. Our study has been designed in a theoretical framework where mathematical
modeling, statistical learning methods and big data analytic can coexist. Speci�cally, we have studied a possible
relation between the de�nition of information entropy of loction visited by indiviuals with their mobility as well
as other factors like population density and interpersonal distances. We have also investigated the extent to which
mobility and entropy correlate with di�erent economic variables. Unveiling such correlation may therefore prove
useful for the design of region-speci�c lockdown policies, that balance the epidemic spread and economic losses.
In a short time range framework, the interaction rate Bt in eq.(1), is important in explaining how the trend of
the epidemic reproduction number is directly related to mobility and proximity which are part of the notion of
Shannon uncorrelated entropy. On the other side, the lockdown intensityLt, in eq.(2), is also strongly related with
mobility restrictions and con�nement policies, so that the Shannon Entropy is a good candidate to capture the
short range economic impact on labor market and consumer spending, where a more comprehensive indicators
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is required beyond just straight mobility.
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Appendices

A Entropic measures

We represent a situation where a certain number of individuals are represented with two extreme behaviors.
Some of them can freely move with erratic movements others stand still (so completely regular) and out from
the interaction process in society. We have presented di�erent types de�nitions of entropy in terms of the data
used. We want know to provide some theoretical evaluations which relies on an epidemiological framework of
N non-interacting (uncorrelated) individuals moving randomly in a region of size L and area A = L× L where
each individual occupies a small portion of the area 4πr2 where r is the collision radius which is larger if an agent
maintains a small average inter-personal distance with others. We always assume a sparse condition for which
4πr2 � A/N .

A.1 Con�gurational Entropy and Boltzmann picture

We assume that each individual has the same velocity and radius of others. The e�ective area allowed for a
single individual is A = (L − 2r)2 and let us observe that each individual has 4πr2 less area than the previous
individuals so that the con�gurational space is:

AN =
1

N !

N∏
n=1

(
A− (n− 1)4πr2

)
(10)

where the factorial is the normalization factor due to the permutation of identical individuals. WhereA is the area
of the region in which the population is considered, and r is the radius of interaction of each identical individual
which occupies a small region π(2r)2. We have also ignored the samll correction the excluded region around the
�rst individual overlaps the excluded region near the borders of the region. At this point we can write down the
entropy on bits of information which is the Gibbs entropy under constant mobility expansion so to get:

SQ = − logAN (11)

= − logN ! +

N∑
n=1

log
(
A− (n− 1)4πr2

)
(12)

Consequently, under the sparsity assumption and large number of individuals, one can write the the con�gura-
tional entropy in terms of Gibss (or random) picture as:

Srand = SQ/N (13)

' 1 + log
(A
N
− 4πr2

)
= 1 + log

(A
N
− A1

1

)
(14)

' 1 + log
(1

δ
− 1

δ1

)
(15)

where we have used the Sterling approximation for factorials and the sparse condition. We observe that A/N =

1/δ is the inverse of the population density, which represents the number of individuals which actively participate
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to the collision process over the e�ective region which is explored with the same frequencies in all its parts. All this
assumptions push the previous con�gurational entropy to be associated the so called random entropySrand which
is equivalent to the Gibbs entropy of equiprobable con�gurations. Let us notice that in principle the interaction
radius r can dependt both on the size of the region and the number of individuals or even depend on cultural
attitudes. That is why it would be better to �nd another variable which is more free from such interdependence
and

We can also include the e�ect of the human mobility by considering the de�nition of thermodynamic entropy
in 2 dimension due to a change of temperature T and pressure P in a system with constant kinetic energy as
∂S
∂A

∣∣
E

= P
T where the energy is purely kinetic so thatE ∝ NT , so keeping a constant energy amounts to keeping

a constant temperature. So substituting the expression for the con�gurational entropy SQ and di�erentiating, we
obtain the important relation among mobility, interpersonal distancing and population density A

N − 2πr2 ∝ T .
Then we can take the temperature to be related to the mean square velocity in 2N velocity coordinates as T =
1
2kµ

2, so that the random entropy is proportional to mobility. However the dependence of the random entropy
on velocity is dependent on variables that we do not have control about, we are not able to follow the change
of entropy over time just starting by the mobility. In order to �x such limitation of the Gibbs picture, we can
generalize the calculation of the entropy, assuming independently the existence of a give density and mobility
separately. As a consequence, in order to detect a more clear relation between entropy and mobility other than
the population density, we use a di�erent approach which account for a large phase space for both position and
momentum.

A.2 Shannon Entropy and Gibbs picture

Now let us discuss the case where individuals are allowed to have a velocity distribution di�erent from the previ-
ous Dirac delta distribution as in the con�gurational entropy above. We considerN individuals in a 2 dimensional
region. Canonical coordinates and momenta are p = (p1 . . . p2N ), q = (q1 . . . q2N ) so that every point in the 4N

dimensional phase-space k(p, q) corresponds to a possible state of the social system. The volume measure of the
phase-space is de�ned as:

dΓ =
2N∏
i=1

dpidqi
c

(16)

where c = (m2µ2
1πr

2)N is a dimensional constant. The probability for the system to occupy the state at point k
is ρ(k) By de�nition, entropy determines the number of available states (or, classically, phase volume). Assuming
that system spends comparable time in di�erent available states we conclude that since the equilibrium must
be the most probable state it corresponds to the entropy maximum. The statistical entropy is identi�ed as the
quantity (depending on ρ) which is maximized for a physical ensemble where the maximization of the entropy
determines the physical distribution ρ. The entropy in terms of a Boltzmann picture can be written:

SB = kB

∫
Γ
−ρ log ρ

dpdq

c
− λ1

(∫
Γ

p2

m2
ρ
dpdq

c
−Nµ2

)
− λ2

(∫
Γ
ρ
dpdq

c
− 1

)
(17)

where the second and the third constraint terms account for enforcing the root mean square velocity and for en-
forcing normalization respectively. Maximizing the entropy is equivalent to the minimization of the information
about the system.
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The maximization of entropy under constrains provide the value of the Lagrange multipliers (λ1, λ2):

0 = δS =

∫
Γ

(
− log ρ− 1− λ1

m2
p2 − λ2

)
δρ
dpdq

c
(18)

After some calculations we �nd that
ρ = e−(1+λ2)e−

λ1p
2

m2 (19)

meanwhile from constraints we get the value of the multipliers:∫
Γ

p2

m2
ρ
dpdq

c
= Nµ2 ⇒ λ1 =

1

µ
(20)∫

Γ
ρ
dpdq

c
= 1⇒

(
m2π

λ1

)N
1

c

∫
Γ
dq = e1+λ2 (21)

The last integralAN =
∫

Γ dq represents the con�gurational spatial entropy which can be calculated as in eq.(10).
Replacing and making some algebraic manipulation in the sparse limit we get the approximation of the uncorre-
lated Shanon entropy in terms of social distancing variables as:

SU = SB/(kBN) ≈ 2 log
µ

µ1
+ log

2δ1

δ
+ 2 (22)

where we do explicitly see the dependence of the entropy to all the social distancing and census data (µ, δ|µ1, δ1)

where δ0 = 1/4πr2 interpreted as individual spacial density. Then, µ1 is the size of a geohash divided by the
duration of a day, meaning that there is a minimal velocity of a device (or a group of) that cannot be detected
because under the sensitivity of recording devices. However the previous equation cannot be used directly as
comparison to Shannon Entropy reported by data due to a lack of information and interpretation of the constants
in the boltzamnn derivation of entropy.

Let us notice that in the possonian-type epidemic model where the infection rate is constant over time, the
fundamental assumption relies on assuming the entropy constant over time, apart from some calibration, so
that r ∼ 1/

√
µ which is not in general true because of the unpredictability of the movement changes over time

as consequences of social distancing behaviors.

A.3 Real entropy and Kolmogorov picture

Now we brie�y discuss about the realistic e�ects of time-correlated patterns in human mobility measures. Let us
consider a set of locations in a target area, and a time-ordered input sequence X = {x1, x2, . . . , xn−1} where
xi is the i-th location visited the user representing a random variable of the location at time ti, i = 1, 2, . . . , n.
The duration at location xi is the time di�erence between ti and ti+1. In the study of human mobility we have
introduce the concept of random entropy Srand measures the uncertainty of an individual’s next location assum-
ing that this individual’s movement is completely random among N possible locations. Then we have de�ned
Shannon entropy SU where the individual’s movement among N possible locations follows a given probability
distribution and it is referred to as the temporal-uncorrelated entropy. There is another deinition of entropy which
also takes in account the frequency of the visited locations and the order in which these locations are visited. It
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was introduce by Song et al. [66] and then used by many other authors Kulkarni et al. [43], Lu et al. [48], Teixeira
et al. [68], Wang et al. [72], it captures the temporal correlations among individual trajectories. It is de�ned as:

Sreal = −
∑
T ′∈T

P (T ′)log(P (T ′)) (23)

where T represents the sequence of the visited locations and T ′ represents a subsequence of T . However the real
entropy cannot be obtained directly using the previous relation but can be estimated by entropy rate estimators
for example using Burrows-Wheeler transform (BWT) estimator or the Lempel-Ziv data compression algorithm
Kontoyiannis et al. [39], Lempel and Ziv [44] as:

Sreal ≈
logN

1
N

∑N
n=1 Li

(24)

where N is the length of the trajectory (total number of locations) and Li is de�ned as the length of the short-
est substring at an index i not appearing previously from index 1 to i − 1. Both algorithms can be applied
to observed transitions between locations and they are almost-sure convergent for stationary, ergodic random
processes characteristic of movement trajectories. In particular A person with a smaller real entropy is consid-
ered more predictable, as he is more constrained to the same sub-paths in the same order. However, data we
have used do not permit such �ne analysis, and therefore we cannot extract any activity time related feature
from our time patterns. Consequently, we cannot calculate directly the real entropy, but it is know that theo-
retically that Sreal ≤ SU ≤ Srand. It is important to emphasize that when the process is completely random,
Sreal = SU = Srand, and when the process is not completely random but includes inherent repetitive patterns,
the real entropy Sreal is the smallest among the three entropy rate measures. So, we expect to observe a real
entropy which takes in account the changes on temporal pattern of individual movements which realistically are
di�erent from a no memory (posissonian) process. Despite that fact it is important to notice that beeing able
to reduce one entropy will always result in real entropy which will be never large than the shannon entropy.
Furthermore one should also include cross-correlations in the path of di�erent individuals, meaning that a trajec-
tory of one individual can haxve an impact on the trajectory of another individual. Despite such micro-founded
approach to mobility, if one observe an aggregate mobility the Shannon entropy will result to be reliable measure
of tracking the e�ectiveness of mobility control on the entropy and so on the controlling the unpredictability of
human movements.

B Population Density Issue

We have tried to explain such empirical results through a theoretical model supported by statistical evidences
related to a collision framework of individual interactions responsible for the spreading of an epidemic which
su�er for economic losses. We can observe in �g.10 as the entropy is related to two important social distancing
variables as mobility and density among other factors which are among the main variables of interest in the in-
teraction rate and the lockdown intensity in the epidemiological and economic functions respectively. However,
density is one of the most fundamental properties of urban areas, what makes a city di�erent from a suburb, and
suburbs di�erent from rural areas is chie�y how many people there are, and how close they are to each other. The
fact that people in cities live and work near each other is both economically and socially important. The ordinary
gross population density is de�ned as the population divided by area (more speci�cally, land area) so depending
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(a)

(b)

Figure 10: Scatter plot analysis between the random entropy and population weighted density (a) and human mobility in terms of radius
of gyration (b). The cross-sectional regression analysis has been performed for all the 50 states for a given period of time i.e. averaging
of the �rst 14 days of February 2020. Data courtesy of Camber Systems CamberSystems [14] for entropy and mobility measures and
WorldMap Robin Edwards and Sorichetta. [64] for population weighted density.

on arbitrary boundaries. However, it is a rather �awed measure since it deals with large geographic entities such
as counties, states, and countries. Consequently this gross measure ignores the fact that most people live in struc-
tured regions as cities. As an economic measure, population density needs to accommodate the fact that most
economic agents live much more concentrated in space than gross population density measures suggest. The
two basic issues with average population density calculations are the arbitrariness of de�ning borders and the
fact that average population density focuses on the density of the average plot of land, not the density observed
by the average person. In fact population-weighted density captures density as perceived by a randomly chosen
individual. The population density for all census-blocks within a county and then computes population-weighted
mean density. Population-weighted density is meant to measure average ”experienced” density and was popu-
larized in economics Carozzi [15], Glaeser and Kahn [29], Rappaport [62]. Population density is a very important
variable in many economic analyses and together with the organization of the city has played an essential role
in the speed and the intensity of transmission of a epidemic and the e�ectiveness of shelter-in-place responses
(staying home, avoiding travel). Many research works have been looked at the relationship between density, mo-
bility and interpersonal distances, with the productivity of di�erent regions and urban development Rappaport
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[62]. There several ways to correct for the arbitrariness of de�ning borders, with the introduction of a sort of
perceived population density. In particular, population weighted density proposed by Craig [19] is a family of
methods that weight the value of density by their corresponding population size in the aggregation process. In
particular, to gain perspective on the densities at which people live the population-weighted is derived from the
densities of all the census tracts included within the boundary of the Core-based statistical area (CBSA) or Census
Tract Ottensmann [55], U.S. Census Bureau [69]. For example, Covid-19 pandemic has led to a reduced demand
for housing in neighborhoods with high population density. This can be mainly due to the diminished need of
living close to jobs that are telework-compatible and the declining value of access to consumption amenities,
Liu and Su [46]. In fact, the pandemic’s negative e�ect on the demand for density persisted and strengthened
even after the �rst wave of the outbreak. The desirability and structure of cities are shaped by the strength of
agglomeration and dispersion forces. But, the COVID-19 pandemic has re-introduced the danger of disease trans-
mission as a potentially serious dispersion force in modern cities. So that o�ce workers no longer commute to
crowded urban locations for work, and instead conduct businesses virtually at home, Consumption amenities
such as restaurants have also seen much fewer visits, owing to policy mandates or consumers’ concerns over the
potential exposure to the virus in indoor public spaces In the speci�c case of the United States, we have taken
population estimates for 2019 from the U.S. Bureau of Census and combined it with land area data (as provided by
the 2010 census). Then, the weighted population density is calculated we have used subnational level population
weighted density (PWD) metrics as produced using WorldPop metric Robin Edwards and Sorichetta. [64]. As an
alternative approach, the population density can be thought as the average density in a polygon containing a
particular mobile-phone tower, in which the polygons are obtained according to voronoi division 2. Some studies
Järv et al. [35], Ji et al. [36], Salat et al. [65] show mobile phone data can be used as a proxy to evaluate the den-
sity, activity and social characteristics of a population. The population count inside each Voronoi cell has been
estimated from the intersection between the Voronoi cell and the census block, assuming a uniform distribution
inside each block.

2Voronoi diagram is a partition of the plane with respect to n nodes such that points are in the same region with a node if they are
closer to that node than to any other point. The method of Voronoi polygons is used in meteorology to elaborate the precipitation area
on the basis of measured values as the so-called method of polygons of equal precipitation.
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