Choosing Technologies: Benefits of Investing into the Fourth Industrial Revolution

Bettina Peters and Markus Trunschke

Joint CIIE-WPIA-GROWINPRO Conference Value Creation and Distribution in the Digital Era

28th January 2021

Fourth Industrial Revolution: Automation of the Economy

- Technology trend across technology fields (Ménière et al. (2017))
 - Driven by the internet of things

- Allowing to build systems of smart connected objects
- Enables use of further technology e.g. cloud computing, AI
- Large-scale automation of task groups and intellectual tasks

Fourth Industrial Revolution: Application Areas

Enterprises

Fourth Industrial Revolution: Application Areas

Enterprises

Infrastructure

ZEW Motivation Preview Theoretical Model Data Estimation Results Conclusion

Fourth Industrial Revolution: Application Areas

Enterprises

 Products / Home and personal use

4IR: Potential Benefits and Costs

- Developing 4IR technology is an important opportunity for increased firm performance
 - Highly flexible production (Bartel et al. (2007))
 - More customizable/ personalized products & services (Bartel et al. (2007))
 - Better informed decision making (Brynjolfsson et al. (2011))
 - Cost savings and less uncertainty (Bresnahan et al. (2002), Arvanitis (2005))

4IR: Potential Benefits and Costs

- Developing 4IR technology is an important opportunity for increased firm performance
 - Highly flexible production (Bartel et al. (2007))
 - More customizable/ personalized products & services (Bartel et al. (2007))
 - Better informed decision making (Brynjolfsson et al. (2011))
 - Cost savings and less uncertainty (Bresnahan et al. (2002), Arvanitis (2005))
- Developing and incorporating the technology comes with many challenges
 - Major changes in production processes (Sung (2018))
 - Need to acquire different competences/knowledge (McKinsey (2017))

4IR: Potential Benefits and Costs

- Developing 4IR technology is an important opportunity for increased firm performance
 - Highly flexible production (Bartel et al. (2007))
 - More customizable/ personalized products & services (Bartel et al. (2007))
 - Better informed decision making (Brynjolfsson et al. (2011))
 - Cost savings and less uncertainty (Bresnahan et al. (2002), Arvanitis (2005))
- Developing and incorporating the technology comes with many challenges
 - Major changes in production processes (Sung (2018))
 - Need to acquire different competences/knowledge (McKinsey (2017))
- When deciding which technology type to develop firms have to compare expected long-run benefits

Our Research Question and (Planned) Approach

ZEW

• What are the long-run expected net benefits of developing 4IR?

Our Research Question and (Planned) Approach

- What are the long-run expected net benefits of developing 4IR?
- Construct a dynamic structural model of firms' decisions to develop different technologies
 - Differentiate between 4IR-related and non-4IR-related technology
 - Account for dynamic nature of technology development decisions
 - Allow productivity to develop endogenously
 - Expressions for expected long-run benefits
- Estimate its parameters with a large panel data set (1993-2018)

Our Research Question and (Planned) Approach

- What are the long-run expected net benefits of developing 4IR?
- Construct a dynamic structural model of firms' decisions to develop different technologies
 - Differentiate between 4IR-related and non-4IR-related technology
 - Account for dynamic nature of technology development decisions
 - Allow productivity to develop endogenously
 - Expressions for expected long-run benefits
- Estimate its parameters with a large panel data set (1993-2018)
- Calculate long-run benefits of both 4IR and non-4IR technology
- Conduct counterfactual analyses, e.g. to assess the impact of 4IR subsidies

Main Contributions

- **Productivity effects of digital technologies** (Brynjolfsson et al. (2011), Bartel et al. (2007), Stiroh (2002), Bertschek et al. (2013),...)
 - ⇒ Investigate productivity effects of (different types of) 4IR technology
 - \Rightarrow Evolution of productivity effects over time
 - ⇒ Employ new patent classification as a measure for 4IR technology

Main Contributions

- **Productivity effects of digital technologies** (Brynjolfsson et al. (2011), Bartel et al. (2007), Stiroh (2002), Bertschek et al. (2013),...)
 - ⇒ Investigate productivity effects of (different types of) 4IR technology
 - \Rightarrow Evolution of productivity effects over time
 - ⇒ Employ new patent classification as a measure for 4IR technology
- Dynamic models of R&D choice (Aw et al. (2011), Peters et al. (2017),...)
 - ⇒ Differentiate between R&D for different types of technology
 - $\Rightarrow\,$ Calculate short- and long-run benefits and development costs

Key Take-Aways

- Significant positive productivity effects of 4IR and non-4IR technology
- Productivity effects of developing 4IR technology is higher
- Evidence of installation phase arguments:
 - No productivity effects of 4IR in early periods,
 - but strong effects in later period

Theoretical Model: Overview

- Extension of R&D choice models (Aw et al. (2011), Peters et al 2017, 2020)
 - Model links R&D/innovation \longrightarrow productivity \longrightarrow short-run firm profits \longrightarrow long-run benefits
 - Extension allowing for R&D choice in different technology types
 - 4IR technology (d_{it})
 - Non-4IR technology (n_{it})

Theoretical Model: Overview

Theoretical model consists of three parts

- 1) Consumer demand, short-term profits and price setting
- 2) Productivity development
- 3) Dynamic development decision and innovation cost

Theoretical Model: Part 1 - Firm Profits

$$R_{it}(\omega_{it}) = \left(\frac{\eta_j}{1+\eta_j}\right)^{1+\eta_j} \Phi_{jt} C(\cdot)^{1+\eta_j} e^{-(1+\eta_j)\omega_{it}}$$
(1)

- ω_{it} combines production efficiency and demand shifter into revenue productivity
- Firm **profits**

$$\pi(\omega_{it}) = -\frac{1}{\eta_j} R_{it}$$
⁽²⁾

Theoretical Model: Part 2 - Productivity Development

- Technology development decision affects firm's productivity
- Productivity ω_{it} evolves as an endogenous Markov process

$$\omega_{it+1} = g(\omega_{it}, d_{it}, n_{it}) + \xi_{it+1}, \text{ with } \xi_{it+1} \sim f(0, \sigma_{\xi}^2)$$

 $\omega_{it} = \alpha_1 \omega_{it-1} + \alpha_2 \omega_{it-1}^2 + \alpha_3 \omega_{it-1}^3 + \alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} \cdot n_{it-1} + \xi_{it}$

(3)

Theoretical Model: Part 3 - Dynamic Development Decision

- Technology development is costly
- Development costs unobserved
- We model them as a random draw from an exponential distribution

$$C_{it}^{d} \sim \exp(\gamma^{d}(K_{it}, d_{it-1})), C_{it}^{n} \sim \exp(\gamma^{n}(K_{it}, n_{it-1})).$$
(4)

 γ^d, γⁿ: Technology development cost parameter for 4IR- and non-4IR
 innovation cost distributions

Theoretical Model: Part 3 - Dynamic Development Decision

The firm has **four choice possibilities** (and four expected future value functions):

$$V(s_{it}) = \pi(\omega_{it}) + \int_{C^{d}} \int_{C^{n} d, n \in \{0,1\}} \begin{cases} \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 0, n_{it} = 0)]; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 0, n_{it} = 1)] - C_{it}^{n}; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 1, n_{it} = 0)] - C_{it}^{d}; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 1, n_{it} = 1)] - C_{it}^{n} - C_{it}^{d} \end{cases} dC^{d} dC^{n}$$

with choice specific expected future values as

$$E[V(s_{it+1}|\omega_{it}, d_{it}, n_{it})] = \int_{\omega} V(s_{it+1}|\omega_{it}, d_{it}, n_{it}) dG(\omega_{it+1}|\omega_{it}, d_{it}, n_{it})$$
(5)

Theoretical Model: Part 3 - Long-run Benefit of Developing 4IR Technology

• **Marginal benefit** of technology development investment is given by the difference in expected future value of the firm:

Developing 4IR technology

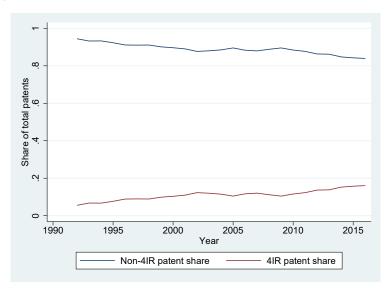
$$\Delta_d E_t[V(s_{it+1})] = \delta E_t[V(s_{it+1}|\omega_{it}, n_{it}; d_{it} = 1)] - \delta E_t[V(s_{it+1}|\omega_{it}, n_{it}; d_{it} = 0)]$$
(6)

Developing non-4IR technology

$$\Delta_n E_t[V(s_{it+1})] = \delta E_t[V(s_{it+1}|\omega_{it}, d_{it}; n_{it} = 1)] - \delta E_t[V(s_{it+1}|\omega_{it}, d_{it}; n_{it} = 0)]$$
(7)

Data

7FW


Mannheim Innovation Panel (MIP)

- Representative survey of German innovative firms
- Period 1993-2018
- Information on firm variables (employees, material, capital, revenues, industry classification)

Patent data

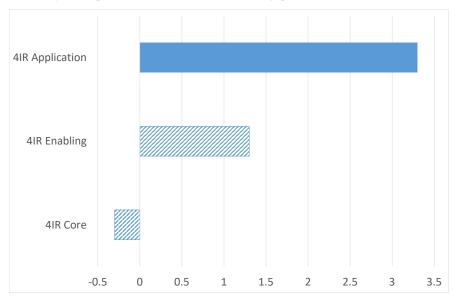
- PATSTAT Worldwide patent database
- Large number of patent characteristics (patent holder, patent family, citations, etc.)
- Patent classification from EPO for belonging to 4IR (4IR Classification)
- Combined we have 45,401 observations (16,580 firms) between 1993 and 2016 Summary statistics

Increasing Share of 4IR Patents over Time

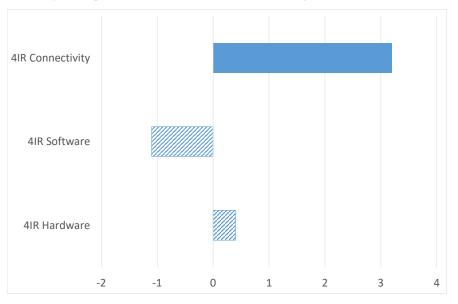
Estimation

- We estimate all model parameters in two stages
- 1st stage
 - Estimate the revenue function to get all static parameters using NLLS

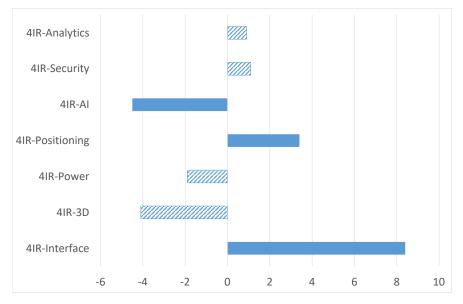
$$r_{it} = \lambda_{jt} + (1 + \eta_j)(\beta_0 + \beta_k k_{it} + \sum_{z=1}^Z \beta_{a_z} A_{it}^z + \beta_e E_{it} - (\alpha_1 \omega_{it-1} + \alpha_2 \omega_{it-1}^2 + \alpha_3 \omega_{it-1}^3 + \alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} \cdot n_{it-1}) + \epsilon_{it}$$


- Calculate productivity (ω_{it}) and profits for second stage
- 2nd stage
 - Estimating dynamic parameters (cost parameters, value function and expected value function) using nested fixed point

Developing 4IR and Non-4IR Technologies Increases Productivity But ...


ZEW

Digi and non-digi dummies						
Variables	Full	Early	Middle	Late		
ω_{t-1}	0.639***	0.679***	0.652***	0.672***		
	(0.0127)	(0.0230)	(0.0174)	(0.0159)		
ω_{t-1}^2	0.162***	0.152***	0.173***	0.150***		
	(0.00465)	(0.00890)	(0.00792)	(0.00604)		
ω_{t-1}^{3}	-0.0296***	-0.0318***	-0.0361***	-0.0296***		
1 - 1	(0.000974)	(0.00202)	(0.00230)	(0.00145)		
$4IR_{t-1}$	0.0828***	0.0258	0.0404	0.134***		
	(0.0192)	(0.0404)	(0.0348)	(0.0277)		
Non-4IR $_{t-1}$	0.0675***	0.0574***	0.0662***	0.0711***		
	(0.00457)	(0.00956)	(0.00749)	(0.00711)		
$4IR_{t-1} \cdot Non - 4IR_{t-1}$	-0.0609***	0.0371	-0.0379	-0.113***		
	(0.0206)	(0.0460)	(0.0371)	(0.0296)		
Capital	-0.0890***	-0.0570***	-0.105***	-0.100***		
	(0.00180)	(0.00321)	(0.00318)	(0.00289)		
Export	-0.0726***	-0.0327***	-0.0667***	-0.104***		
	(0.00659)	(0.0126)	(0.0111)	(0.0106)		
A^2 : 10 - 19	-0.0133	0.000608	0.0262	-0.0502**		
	(0.0145)	(0.0324)	(0.0222)	(0.0249)		
A ³ :20 - 49	-0.0603***	-0.0474	-0.0978***	-0.0492**		
	(0.0142)	(0.0302)	(0.0239)	(0.0234)		
A ⁴ : 50+	-0.146***	-0.196***	-0.170***	-0.0898***		
	(0.0159)	(0.0300)	(0.0257)	(0.0278)		
Ν	21,509	5,093	6,944	9,472		


Productivity Impact of Different Types of 4IR Technologies

Productivity Impact of Core Technologies

Productivity Impact of Enabling Technologies

Conclusion and Outlook

- Constructed a structural model of firm's technology development choice
- Positive productivity effects of developing 4IR
- Early developers did not experience significant productivity effects
- Effect increases substantially over time
- Higher effect for 4IR technology than for non-4IR technology
- High productivity effects especially for 4IR applications (positioning, interface) and core technologies (connectivity)
- No average productivity returns yet to AI
- Outlook: Long-run benefits and policy simulations

Thanks for your attention!

Appendix: Demand Elasticities

	Full sample	1993-2000	2001-2008	2009-2016
Industry	η	η	η	η
Food	-3.15***	-3.08***	-3.21***	-3.15***
Textiles	-3.64***	-3.73***	-3.78***	-3.49***
Paper/wood	-3.54***	-3.48***	-3.64***	-3.51***
Chemicals	-3.09***	-3.04***	-3.12***	-3.11***
Plastic	-3.69***	-3.52***	-3.87***	-3.77***
Minerals	-3.27***	-3.25***	-3.45***	-3.16***
Metal	-3.93***	-3.95***	-4.19***	-3.75***
Machinery	-3.99***	-4.01***	-4.08***	-3.90***
Electronics	-3.94***	-3.86***	-3.95***	-3.99***
Instruments	-3.56***	-3.73***	-3.76***	-3.34***
Vehicles	-4.37***	-4.44***	-4.42***	-4.29***
Misc. manuf.	-3.34***	-3.41***	-3.46***	-3.23***
Ν	51645	16712	14215	20718

Notes: Significance at the * 5% level, ** 1% leve1, *** 0.1% level. Time and industry dummies variables are included in estimation but not reported.

ZEW Appe

Appendix

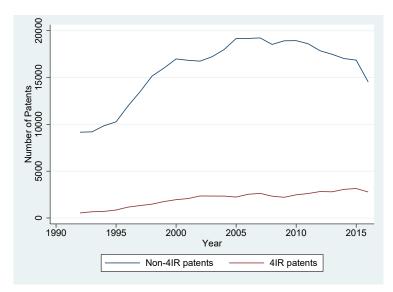
Appendix: Summary Statistics

Variable	Model	Unit	mean	med	sd	min	max
Revenues	R	mio €	384.955	6.564	2585.008	0	82106.4
Fixed capital	K	mio €	201.092	1.397	1710.461	0	61201.2
Material cost	M	mio €	254.934	2.285	1882.106	0	69101.4
Labor cost		mio €	56.916	1.96	375.290	0	13744.0
Total variable cost	С ^M q	mio €	311.851	4.645	2179.944	0	71090.0
Firm age							
0-9	A^1	0/1	.197	0	.398	0	1
10-19	A^2	0/1	.277	0	.447	0	1
20-49	A ³	0/1	.288	0	.453	0	1
50+	A ⁴	0/1	.219	0	.414	0	1
Exporter	E	0/1	0.548	1	0.498	0	1
Non-digital tech	n	0/1	0.074	0	0.261	0	1
Digital tech	d	0/1	0.024	0	0.153	0	1

Notes: Number of observations: 45589. Sample period: 1993-2016. For ease of representation, all monetary variables are in million euro, for estimation we use their log values.

ZEW Appendix

References


4IR Patent classification

- Developed by the European Patent Office in 2017
- Patent examiners from all technology fields identified 320 CPC fields they relate to building blocks of 4IR
- Three building blocks

Technologies	Description	Examples	
Core technologies	Basic technologies to build 4IR technology on	sensors, cloud storage, adaptive databases	
Enabling technologies	Build on core technologies and allow a variety of application domains	big data diagnostics, virtual reality, position determination sys.	
Application domains	Applications using core- and enabling technologies	intelligent robotics, smart home sys., wearables	

ZEW Appendix

Development of 4IR and Non-4IR Patents over Time

Appendix

Data: Patents per Industry

		410	0/ 410	Tatal
	Non-4IR	4IR	% 4IR	Total
Industry	Patents	Patents	Patents	Patents
Food	474	9	.0186	483
Textiles	1,117	89	.0738	1,206
Paper/Wood	2,564	600	.1896	3,164
Chemicals	52,432	1,203	.0224	53,635
Plastic	4,616	130	.0274	4,746
Minerals	2,068	67	.0314	2,135
Metal	5,156	214	.0399	5,370
Machinery	38,392	3,318	.0795	41,710
Electronics	46,763	14,407	.2355	61,170
Instruments	11,421	2,936	.2045	14,357
Vehicles	26,518	7,658	.2241	34,176
Misc. manuf.	890	98	.0992	988
Total/Average	200,852	34,475	.1465	235,327

ZEW Appendix

Appendix: Theoretical Model: Part 1 - Consumer Demand

- Assume monopolistic competition (Dixit and Stigliz (1977))
 - Allows for differentiated goods
 - ► Allows for short-term profits
 - No strategic interactions
- Demand for each firm i's

$$q_{it} = \left(\frac{p_{it}}{P_{jt}}\right)^{\eta_j} \frac{I_{jt}}{P_{jt}} e^{\phi_{it}} = \Phi_{jt} p_{it}^{\eta_j} e^{\phi_{it}}, \qquad (8)$$

- *P_{jt}*: Industry *j*'s price index
- *I_{jt}* : Market size
- η_j : Demand Elasticity
- ϕ_{it} : Demand shifter

Appendix: Theoretical Model: Part 1 - Price Setting

Marginal costs

$$C_{it}^{M} = rac{C\left(K_{it}, W_{it}, A_{it}, E_{it}
ight)}{e^{\psi_{it}}}$$

- *K_{it}* : Capital stock
- *W_{it}*: Input market prices
- A_{it}: Firm age
- *E_{it}* : Export status
- ψ_{it} : Production efficiency

(9)

Appendix: Theoretical Model: Part 1 - Price Setting

Marginal costs

7FW

$$C_{it}^{M} = \frac{C\left(K_{it}, W_{it}, A_{it}, E_{it}\right)}{e^{\psi_{it}}}$$
(10)

• *K_{it}* : Capital stock

Appendix

- *W_{it}*: Input market prices
- A_{it} : Firm age
- *E_{it}* : Export status
- ψ_{it} : Production efficiency
- The **price setting rule** given by profit maximization

(

$$p_{it} = \frac{\eta_j}{1 + \eta_j} C_{it}^M \tag{11}$$

References

Appendix: Theoretical Model: Part 1 - Firm Profits

Revenues

$$R_{it} = p_{it}q_{it} = \left(\frac{\eta_j}{1+\eta_j}\right)^{1+\eta_j} \Phi_{jt} C\left(\cdot\right)^{1+\eta_j} e^{-(1+\eta_j)\omega_{it}}$$
(12)

- Combine production efficiency and demand shifter into revenue productivity ω_{it}

References

Appendix: Theoretical Model: Part 1 - Firm Profits

Revenues

$$R_{it} = p_{it}q_{it} = \left(\frac{\eta_j}{1+\eta_j}\right)^{1+\eta_j} \Phi_{jt} C(\cdot)^{1+\eta_j} e^{-(1+\eta_j)\omega_{it}}$$
(13)

- Combine production efficiency and demand shifter into revenue productivity ω_{it}
- Firm **profits**

$$\pi_{it} = \pi(\omega_{it}) = R_{it} - C_{it}^{M} q_{it} = -\frac{1}{\eta_j} R_{it}$$
(14)

Appendix: Theoretical Model: Part 2 - Productivity Development

- Technology development decision affects firm's productivity
- Productivity ω_{it} evolves as an endogenous Markov process

$$\omega_{it+1} = g(\omega_{it}, d_{it}, n_{it}) + \xi_{it+1}, \text{ with } \xi_{it+1} \sim f(0, \sigma_{\xi}^2)$$
(15)

Appendix: Theoretical Model: Part 3 - Dynamic Development Decision

Technology development is costly

Appendix

7FW

- Development costs unobserved
- We model them as a random draw from an exponential distribution

$$C_{it}^{d} \sim \exp(\gamma^{d}(K_{it}, d_{it-1})),$$

$$C_{it}^{n} \sim \exp(\gamma^{n}(K_{it}, n_{it-1})).$$
(16)

 γ^d, γⁿ: Technology development cost parameter for 4IR- and non-4IR
 innovation cost distributions

Appendix: Theoretical Model: Part 3 - Dynamic Development Decision

- Firms choose to develop *d* or *n* to maximize their discounted future value
- Their value function is

$$V(s_{it}) = \pi(\omega_{it}) + \delta E[V(s_{it+1}|\omega_{it}, d_{it}, n_{it})] - E[C_{it}^{d} \cdot d_{it}] - E[C_{it}^{n} \cdot n_{it}], \quad (17)$$
with $s_{it} = (\omega_{it}, K_{it}, d_{it-1}, n_{it-1})$
and δ as a discount factor

Appendix: Theoretical Model: Part 3 - Dynamic Development Decision

7FW

Appendix

The firm has four choice possibilities (and four expected future value functions):

$$V(s_{it}) = \pi(\omega_{it}) + \int_{C^{d}} \int_{C^{n} d, n \in \{0,1\}} \begin{cases} \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 0, n_{it} = 0)]; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 0, n_{it} = 1)] - C_{it}^{n}; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 1, n_{it} = 0)] - C_{it}^{d}; \\ \delta E_{t}[V(s_{it+1} | \omega_{it}, d_{it} = 1, n_{it} = 1)] - C_{it}^{n} - C_{it}^{d} \end{cases} dC^{d} dC^{n}$$

with choice specific expected future values as

$$E[V(s_{it+1}|\omega_{it}, d_{it}, n_{it})] = \int_{\omega} V(s_{it+1}|\omega_{it}, d_{it}, n_{it}) dG(\omega_{it+1}|\omega_{it}, d_{it}, n_{it})$$
(18)

Appendix: Theoretical Model: Part 3 - Benefit of Developing 4IR Technology

- **Marginal benefit** of technology development investment is given by the difference in expected future value of the firm:
 - Developing 4IR technology

Appendix

7FW

 $\Delta_d E_t[V(s_{it+1})] = \delta E_t[V(s_{it+1}|\omega_{it}, n_{it}; d_{it} = 1)] - \delta E_t[V(s_{it+1}|\omega_{it}, n_{it}; d_{it} = 0)]$ (19)

Developing non-4IR technology

 $\Delta_n E_t[V(s_{it+1})] = \delta E_t[V(s_{it+1}|\omega_{it}, d_{it}; n_{it} = 1)] - \delta E_t[V(s_{it+1}|\omega_{it}, d_{it}; n_{it} = 0)]$ (20)

References

Appendix: Empirical Model: Overview

- We estimate all model parameters in two stages
- 1st stage
 - Estimate demand elasticity η_j
 - Estimate the revenue function to get all static parameters
 - Deal with simultaneity issue
 - Calculate productivity (ω_{it})
- 2nd stage
 - Estimating dynamic parameters (cost parameters, value function and expected value function)

Appendix: Empirical Model: Stage 1 - Demand Elasticities

Using profit equation 14

$$\pi_{it} = \pi(\omega_{it}) = -\frac{1}{\eta_j} R_{it} \Leftrightarrow \frac{C_{it}^M q_{it}}{R_{it}} = 1 + \frac{1}{\eta_j}$$
(21)

- Regress total variable cost revenue ration on industry-specific constants
- Back out industry demand elasticity η_j (Results)

- Assume Cobb-Douglas type functional form of cost function
 - Assume input prices W do not differ between firms (so $W_{it} = W_t$)

$$C(K_{it}, W_{it}, A_{it}, E_{it}) = K_{it}^{\beta_k} W_t^{\beta_w} e^{\beta_0 + \sum_{z=1}^{Z} \beta_{a_z} A_{it}^z + \beta_e E_{it}}$$
(22)

Appendix: Empirical Model: Stage 1 - Static Parameters

- Assume Cobb-Douglas type functional form of cost function
 - Assume input prices W do not differ between firms (so $W_{it} = W_t$)

$$C(K_{it}, W_{it}, A_{it}, E_{it}) = K_{it}^{\beta_k} W_t^{\beta_w} e^{\beta_0 + \sum_{z=1}^Z \beta_{a_z} A_{it}^z + \beta_e E_{it}}$$
(23)

Inserting (23) into the revenue equation 13 and taking logs gives

$$r_{it} = \lambda_{jt} + (1 + \eta_j)(\beta_0 + \beta_k k_{it} + \sum_{z=1}^Z \beta_{a_z} A_{it}^z + \beta_e E_{it} - \omega_{it}) + \epsilon_{it}$$
(24)

- λ_{jt} includes all factors constant over firms in each industry
- *ϵ_{it}* is an i.i.d, zero mean error term

References

Appendix

References

- Problem: Productivity ω_{it} is unobserved (simultaneity bias)
- Control function approach á la OP 1996, LP 2003 and ACF 2015 \Rightarrow Define ω_{it} as a function of observables

- Problem: Productivity ω_{it} is unobserved (simultaneity bias)
- Control function approach á la OP 1996, LP 2003 and ACF 2015 \Rightarrow Define ω_{it} as a function of observables
- We use model structure to get material demand equation

$$m_{it} = \beta_{jt} + (1+\eta)\beta_k k_{it} + (1+\eta)\sum_{z=1}^Z \beta_{a_z} A_{it}^z + (1+\eta)\beta_e E_{it} - (1+\eta)\omega_{it}$$

References

- Problem: Productivity ω_{it} is unobserved (simultaneity bias)
- Control function approach á la OP 1996, LP 2003 and ACF 2015 \Rightarrow Define ω_{it} as a function of observables
- We use model structure to get material demand equation

$$m_{it} = \beta_{jt} + (1+\eta)\beta_k k_{it} + (1+\eta)\sum_{z=1}^{Z}\beta_{a_z}A_{it}^z + (1+\eta)\beta_e E_{it} - (1+\eta)\omega_{it}$$

$$\Leftrightarrow \omega_{it} = \left(\frac{1}{1+\eta_j}\right)\beta_{jt} + \beta_k k_{it} + \sum_{z=1}^Z \beta_{a_z} A_{it}^z + \beta_e E_{it} - \left(\frac{1}{1+\eta_j}\right) m_{it}$$

Appendix: Empirical Model: Stage 1 - Static Parameters

Assume functional form of productivity development process

 $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 \omega_{it-1}^2 + \alpha_3 \omega_{it-1}^3 + \alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} n_{it-1} + \xi_{it}$ (25)

References

Appendix: Empirical Model: Stage 1 - Static Parameters

Assume functional form of productivity development process

 $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 \omega_{it-1}^2 + \alpha_3 \omega_{it-1}^3 + \alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} n_{it-1} + \xi_{it}$ (26)

- Include inverse of the material demand equation in productivity evolution process
- Include both in revenue equation 24 to get final estimation equation

References

Appendix: Empirical Model: Stage 1 - Static Parameters

Assume functional form of productivity development process

 $\omega_{it} = \alpha_0 + \alpha_1 \omega_{it-1} + \alpha_2 \omega_{it-1}^2 + \alpha_3 \omega_{it-1}^3 + \alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} n_{it-1} + \xi_{it}$ (27)

- Include inverse of the material demand equation in productivity evolution process
- Include both in revenue equation 24 to get final estimation equation

$$\begin{aligned} r_{it} &= \lambda_0 + \lambda_{jt} + (1+\eta_j)\beta_k k_{it} + (1+\eta_j)\sum_{z=1}^Z \beta_{a_z} A_{it}^z + (1+\eta_j)\beta_e E_{it} \\ &- \alpha_1 \left[\beta_{jt-1} + (1+\eta_j)\beta_k k_{it-1} + (1+\eta_j)\sum_{z=1}^Z \beta_{a_z} A_{it-1}^z + (1+\eta_j)\beta_e E_{it-1} - m_{it-1}\right] \\ &- \frac{\alpha_2}{1+\eta_j} \left[\beta_{jt-1} + (1+\eta_j)\beta_k k_{it-1} + (1+\eta_j)\sum_{z=1}^Z \beta_{a_z} A_{it-1}^z + (1+\eta_j)\beta_e E_{it-1} - m_{it-1}\right]^2 \\ &- \frac{\alpha_3}{(1+\eta_j)^2} \left[\beta_{jt-1} + (1+\eta_j)\beta_k k_{it-1} + (1+\eta_j)\sum_{z=1}^Z \beta_{a_z} A_{it-1}^z + (1+\eta_j)\beta_e E_{it-1} - m_{it-1}\right]^3 \\ &- (1+\eta_j) \left[\alpha_4 d_{it-1} + \alpha_5 n_{it-1} + \alpha_6 d_{it-1} n_{it-1}\right] - (1+\eta_j)\xi_{it} + \epsilon_{it}\end{aligned}$$

Estimate with NLLS

(28)

- Arvanitis, S. (2005): "Computerization, workplace organization, skilled labour and firm productivity: Evidence for the Swiss business sector," *Economics of innovation and new technology*, 14, 225–249.
- Aw, B. Y., M. J. Roberts, and D. Y. Xu (2011): "R&D investment, exporting, and productivity dynamics," *American Economic Review*, 101, 1312–1344.
- Bartel, A., C. Ichniowski, and K. Shaw (2007): "How does information technology affect productivity? Plant-level comparisons of product innovation, process improvement, and worker skills," *The quarterly journal of Economics*, 122, 1721–1758.
- Bertschek, I., D. Cerquera, and G. J. Klein (2013): "More bits more bucks? Measuring the impact of broadband internet on firm performance," *Information Economics and Policy*, 25, 190 203, iCT and Innovation.
- Bresnahan, T. F., E. Brynjolfsson, and L. M. Hitt (2002): "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence*," *The Quarterly Journal of Economics*, 117, 339–376.
- Brynjolfsson, E., L. M. Hitt, and H. H. Kim (2011): "Strength in numbers: How does data-driven decisionmaking affect firm performance?" *Available at SSRN 1819486*.
- Ménière, Y., I. Rudyk, and J. Valdés (2017): "Patents and the Fourth Industrial Revolution: the inventions behind digital transformation," Tech. rep.
- Peters, B., M. J. Roberts, V. A. Vuong, and H. Fryges (2017): "Estimating dynamic R&D choice: an analysis of costs and long-run benefits," *RAND Journal of Economics*, 48, 409–437.
- Stiroh, K. J. (2002): "Information technology and the US productivity revival: what do the industry data say?" *American Economic Review*, 92, 1559–1576.

Sung, T. K. (2018): "Industry 4.0: A Korea perspective," Technological Forecasting and Social Change, 132, 40 – 45.