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ABSTRACT  

Technological revolutions mark profound transformations in socio-economic systems. They are 
associated with the diffusion of general purpose technologies that display very high degrees of 
pervasiveness, dynamism and complementarity. This paper provides an in-depth examination of 
the technologies underpinning the ‘factory of the future’ as profiled by the Industry 4.0 paradigm. 
It contains an exploratory comparative analysis of the technological bases and the emergent 
patterns of development of Internet of Things (IoT), big data, cloud, robotics, artificial intelligence 
and additive manufacturing. By qualifying the ‘enabling’ nature of these technologies, the asks to 
what extent their diffusion and convergence can be configured as the trigger of a fourth industrial 
revolution, and identifies key themes for future research on this topic from the viewpoint of 
industrial and corporate change.  
 

 
KEYWORDS: Industry 4.0; technological paradigm; enabling technology; general purpose 
technology; disruptive innovation. 
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1. INTRODUCTION 

Technological revolutions are associated with the emergence of “constellation of innovations” that 

profoundly transforms the economy, and more broadly social systems (Freeman and Louçã, 2001; 

Perez, 2002; 2010). Examples of these technologies are water-powered energy and steam engine, 

which shaped the British Industrial Revolution, then electricity, automotive technologies and more 

recently information and communication technologies (ICTs). Observation of such cyclical 

revolutions has provided the basis for the development of a theory of long cycles in economic 

growth where spells of high and low growth are tied to the rise and fall of waves of technical 

change (Freeman and Louçã, 2001). The economic literature has also linked this uneven 

development path to the emergence of a specific class of technologies, general purpose 

technologies (GPTs), characterised by pervasiveness, high dynamism and strong 

complementarities (Bresnahan and Trajtenberg, 1995; Jovanovic and Rousseau, 2005; Bresnahan, 

2010). 

 

Understanding the effects of technological transformation requires opening up the “black box” of 

technology and explaining how, where and why they emerge and evolve (Rosenberg, 1982). 

Unique patterns of technical change develop through complex interactions of technical factors (e.g. 

characteristics of artefacts, their specifications and performance measures), the science base, and 

the broader institutional and economic context (Rosenberg, 1982, 1994). Dosi’s (1982) concepts 

of technological paradigms and trajectories provide an ideal framework for the study of innovative 

activities encompassing cognitive, technical, institutional and economic dimensions. While 

technological paradigms characterise and bind the potentially unlimited research space of a 

technology, technological trajectories identify local, cumulative, and irreversible patterns of 

development through time. This overarching framework is extremely useful to study emergent 

general purpose technologies and integrate contextual elements of institutional analysis into this 

approach.  

 

This is important because the identification, measurement and characterisation of technological 

paradigms not only help us understand the knowledge bases of economic systems, but also make 

it possible to study the effects different paradigms may have for the patterns of industrial dynamics 
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and competitiveness (Schumpeter, 1942; Malerba and Orsenigo,1996; Breschi, Malerba and 

Orsenigo, 2000). The potential for disruptive change specifically related to the development of 

GPTs has major implications for barriers to entry, market concentration, and the organisation of 

value chains between incumbents and new entrants (Tushman and Anderson, 1986; Christensen, 

1997). The expanding processes of digitalization and automation in manufacturing and services 

(Teece, 2018) make this kind of analysis all the more urgent because of their effects on 

productivity, wages and employment (Frey and Osborne, 2017; Acemoglu and Restrepo, 2017).  

 

There is yet no consensus as to whether we are observing the onset of a Fourth Industrial 

Revolution and whether this coincides with the Industry 4.0 paradigm. They are not synonyms. 

Industry 4.0 is the qualification of the ‘factory of the future’, shaped by policy interventions that 

have fostered the adoption of smart manufacturing technologies in Europe, and resulting from the 

convergence of a new wave of operational technologies with Internet-driven IT (Kagermann et al., 

2013). This might be a fundamental component of a Fourth Industrial Revolution, but does not 

coincide with it because of its still relatively limited scale and scope. A similar difference exists, 

as Teece (2018) points out, between the notions of general purpose technology vis-à-vis enabling 

technology. Contrary to the concepts of technological paradigm (Dosi, 1982) and general purpose 

technology (Helpman, 1998), the concept of ‘enabling technologies’ has not been well defined in 

the academic literature because it has emerged in the policy arena to profile groups of technologies 

that can contribute to innovation and productivity growth in many sectors of the economy 

(Commission of the European Communities, 2009), and therefore identified primarily as industrial 

policy targets (European Commission, 2017). Paradigm changes and GPTs are much rarer than 

enabling technologies, but some enabling technologies may become GPTs (Teece, 2018) and 

trigger paradigmatic change. This may happen with Industry 4.0 technologies due to 

transformative potential of current trends in digitization and automation, and in particular the 

convergence (or recombination) of some incumbent and some rapidly developing new 

manufacturing technologies.  

 

This paper provides an in-depth examination of the enabling technologies underpinning the 

‘factory of the future’ as profiled by the Industry 4.0 paradigm. It contains an exploratory 
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comparative analysis of the technological bases and the emergent patterns of production and use 

of Internet of Things (IoT), big data, cloud, robotics, artificial intelligence and additive 

manufacturing. We rely on primary and secondary data sources to reflect on the development of 

these technologies. One of the problems faced in empirical research on these topics is the lack of 

systematic information on the adoption of new technologies. This is a major drawback considering 

that the revolutionary potential of new technologies resides in their use, diffusion and adaptation. 

However, and despite well-known limitations, patents are a powerful instrument to study of the 

sources and flows of technological knowledge. We therefore integrate a review of industry reports 

and market data with in-depth analyses of patent records with the aim to identify the emergent 

features of the six enabling technologies.   

 

The paper is structured as follow. In the next section contains a brief overview of the Industry 4.0 

(I4.0) technological context. Section 3 presents extensive patent analyses of the distribution of 

inventive efforts, their patterns of accumulation, their relations, similarities and use, including an 

econometric analysis of the GPT characteristics (generality, originality, and longevity) of the 

technologies. Section 4 discusses the complex dynamics characterising the diffusion of Industry 

4.0. Section 5 draws the contribution to a close.   

 

2. THE TECHNOLOGICAL BOUNDARIES OF ‘INDUSTRY 4.0’ 

Industry 4.0 is not a single technology but rather appears as a cluster of different technologies that 

are de facto agglomerated together by technological leaders, pivotal users, system integrators and 

government policy makers. Figure 1 synthetises the concept by illustrating the core technologies 

of Industry 4.0, with cloud manufacturing connecting industry devices through sensors and digital 

twins, and manufacturing execution systems (MES) that keep control of the whole factory streams 

through manufacturing analytics. It is clearly a complex architecture characterized by old 

technologies paired with new ones, all interconnected by cloud-based Internet.  

<< INSERT FIGURE 1 ABOUT HERE >> 

 

In more detail, the technologies are:  

− IoT. IoT entails devices with self-identification capabilities, localisation, diagnosis status, 
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data acquisition, processing, implementation that are connected via standard 

communication protocols. IoT technologies are used in I4.0 manufacturing applications, 

and in many others (housing and construction, automotive, environment, smart city, 

agriculture, health, etc.). In relation to the Industry 4.0, IoT applications are specific of the 

so called "industrial Internet". 

− Big Data/Industrial Analytics. This includes methods and tools to process large volumes 

of data for manufacturing, supply chain management and maintenance. The data can come 

from IoT systems connected to the productive layer (for example with sensors and 

associated equipment), or the exchange between IT systems for production and warehouse 

management. Specific applications in this area are machine learning tools for planning and 

forecasting, predictive maintenance, and simulation.  

− Cloud Manufacturing. Cloud Manufacturing encompasses the application in 

manufacturing of cloud technologies, with widespread access, easy and on-demand IT 

services – infrastructure, platform or application – to support production processes and 

supply chain management. Cloud manufacturing ranges from the virtualization of physical 

resources necessary for factory equipment to applications, data and processes across 

platforms and execution-and-collaboration tools, and hosted in the Cloud. 

− Robotics. The robotics cluster includes SCARA, Articulated, Cartesian, Dual Arm and Co-

bots (see section 2.4 for precise definitions) as different ways to automate production tasks. 

Advanced automation encompasses the latest developments in production systems with 

improved ability to interact with the environment, self-learning and automatic guidance, the 

use of vision and pattern recognition. 

− Artificial Intelligence (AI). It concerns the knowledge and techniques developed to make 

machines ‘intelligent’, that is to say able to function appropriately also through foresight in their 

environment of application. Industrial AI refers to the computer science-based technologies 

which, coupled with machine learning, are used to generate intelligent sensors, edge computing, 

and smart production systems. 

− Additive Manufacturing, also known as 3D Printing. Additive Manufacturing finds 

application in the prototyping (to support the product development process, static 

simulation and wind tunnel, etc.), manufacturing (direct production of products), 
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maintenance & repair and modelling phases. The US International Standard Organization 

defines the following seven categories of additive manufacturing processes: Binder Jetting, 

Directed Energy Deposition, Material Extrusion, Material Jetting, Powder Bed Fusion, 

Sheet Lamination and Photo polymerization (as per ISO TC 261, 2011). 

We now provide a brief overview of each group of technologies.  

 

2.1 IoT 

The concept of IoT was introduced in the 1980s at Carnegie Mellon where a modified Coke 

dispenser was made able to report its inventory and signal whether newly loaded drinks were 

cold through the Internet. IoT became popular in 1999 in the Auto-ID Center at MIT, with 

Radio-frequency identification (RFID) (Zhang et al., 2011; Chopra and Sodhi, 2007; Kubac 

et al., 2013; Liu and Chen, 2009). Several companies then introduced correlated concepts, 

including Olivetti, Xerox, IBM and universities such as Carnegie Mellon and MIT itself, but 

it was Siemens who introduced a machine-to-machine (M2M) GMS connected system in 1995 

(Benrachi-Maassam, 2012; Kima et al., 2017). Also open source dynamics, like in many other 

IT segments, often pushed the development of IoT, as clearly illustrated by the adoption in 

2003 of the (open source-based) JXYA standard as a universal peer-to-peer standard to 

connect electronic things. After that, diffusion of the technology was boosted by the 

introduction of a low price, single board, electronic things controller, which originated in 2005 

from the Interaction Design Institute Ivrea through the open-source electronics platform 

Arduino. Through this, IoT has progressively become a relevant offering for chip players as 

well as sensors producers, gateways hardware producers and software and machine 

developers for IoT platforms. 

 

The basic disciplines at the roots of IoT are computer science, communication and information 

technology and electronics. The core technologies needed to build an IoT device are 

semiconductor technologies, internet, sensor technologies and more in general 

microelectromechanical systems. More specifically, within these core technologies, IoT 

devices incorporate Bluetooth technologies, low consumption battery technologies, laser 

technologies, smart cameras technologies, smart meters and sensors for energy consumption. 
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Within this heterogeneous assemble of different devices and solutions there are at least three 

technological clusters: devices, software platforms, and gateways and other networking 

elements. IoT technologies are still in an early stage of development and consequently 

characterized by an unstable competitive and technological environment. Technical 

challenges of this kind of environment include: data exchange among large scale 

heterogeneous networks elements, integration and interaction adaptation of uncertain 

information, service adaptation in dynamic system environment.  

 

There are structured data on R&D spending specific to IoT, and we do not have any specific 

on the subsystem of Industrial IoT (IoT). Investments in these technologies are driven by 

private companies. IBM, Google, Samsung, SAP, Dell, Siemens and Intel seem to be the 

companies investing more (IoT Analytics cited in eWeek, 2015), but it is very difficult to 

identify a clear technology leader in both devices and platforms, also due to the vast number 

of different technologies and sectors involved. Interestingly, the growing interest of large 

companies in acquiring IoT capabilities seem to be driving a wave of consolidation in the 

industry, as signalled by the acquisition of Nest and CSR by Google and Qualcomm (FTI 

Consulting, 2016).  

 

2.2 Big Data/Industrial Analytics 

A manufacturing analytic system starts out with a data acquisition system that can either be 

built-in by the original equipment manufacturer (OEM) or a third-party provider. Using 

appropriate sensor assemblies, various signals such as vibration, pressure, temperature, etc. 

can be recorded. The types of signal and data acquisition parameters are determined by the 

application and the failure modes of the asset being monitored. Communication protocols, 

such as MT Connect and OLE-DB Process Control or OPC, can help users to acquire process 

or controller signals. Such data can provide context as to the type of action/function the 

machine was performing when sensor data was being collected. The aggregation of all 

information results in “Big Data” because of the volume of data collected, velocity by which 

data is being received and variety of data that are being collated. Such phenomenon requires 
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new analytical approaches in place of standard statistical process control or other traditional 

techniques.  

 

Several components are at play in this space: an integrated platform, predictive analytics and 

visualization tools. The deployment platform is selected based on several factors such as speed 

of computation, investment cost, and ease of deployment for scaling purposes and update. The 

actual processing or transformation of big data into useful information is performed by 

utilizing predictive analytics such as the tools found in the Watchdog Agent toolbox that has 

been developed by researchers at the National Science Foundation (NSF) Industry/University 

Research Cooperative Center (I/UCRC) for Intelligent Maintenance Systems (IMS) since 

2001. There are also other commercial predictive analytic providers such as IBM, Hadoop, 

SAS, and SAP. The Watchdog Agent algorithms exemplifies the working of this technology. 

It can be categorized into four sections, namely: signal processing and feature extraction, 

health assessment, performance prediction and fault diagnosis (Durdianovic and Lee, 2004). 

By utilizing visualization tools, health information such as current condition, remaining useful 

life estimation, root cause, etc., can be effectively conveyed using radar charts, fault maps, 

risk charts and even health degradation curves. The calculated health information can then be 

forwarded or made available to existing company management systems such as enterprise 

resource planning system (ERP), manufacturing execution system (MES), supply chain 

management system (SCM), customer relation management system (CRM), and product 

lifecycle management system (PLM) to achieve overall enterprise control and optimization.  

 

Big data analytics is the process of examining large and varied data sets to uncover hidden 

patterns, unknown correlations, market trends, customer preferences and other useful 

information that can help organizations make more-informed business decisions. The term 

big data was first used to refer to increasing data volumes in the mid-1990s. In 2001, Doug 

Laney, then an analyst at consultancy Meta Group (Gartner, 2019) expanded the notion of big 

data to also include increases in the variety of data being generated by organizations and the 

velocity at which that data was being created and updated. Separately, the Hadoop distributed 

processing framework was launched as an Apache open source project in 2006, planting the 
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seeds for a clustered platform built on top of commodity hardware and geared to run big data 

applications. Initially, as the Hadoop ecosystem took shape and started to mature, big data 

applications were primarily used by of large internet and e-commerce companies, such as 

Yahoo, Google and Facebook, as well as analytics and marketing services providers. In 

ensuing years, though, big data analytics has increasingly been embraced by retailers, 

financial services firms, insurers, healthcare organizations, manufacturers, energy companies 

and other mainstream enterprises. While we do not have precise data on R&D expenditure on 

manufacturing Big Data tools, the growth of patenting activities in this area indicates a rapid 

increase in commercial interest in this field (Ardito et al., 2018).  

 

2.3 Cloud Manufacturing 

Cloud manufacturing is a new set of IT service delivery models. It can be divided into two 

categories. The first category is concerned with the deployment of manufacturing software on 

the Cloud, i.e. a “manufacturing version” of computing. The second category has a broader 

scope, cutting across production, management, design and engineering abilities in a 

manufacturing business. Unlike with computing and data storage, manufacturing involves 

physical equipment, monitors, materials, etc. In this kind of Cloud Manufacturing system, 

both material and non-material facilities are implemented on the Manufacturing Cloud to 

support the whole supply chain. In Cloud Manufacturing System, various manufacturing 

resources and abilities can be intelligently sensed and connected through the Internet, and 

automatically managed and controlled using IoT technologies (e.g., RFID, wired and wireless 

sensor network, embedded system).  

 

Several industrial players developed products in this space. In 2006 Amazon introduced its 

Elastic Compute Cloud. Microsoft Azure was announced as "Azure" in 2008 and released in 

2010 as Windows Azure, before being renamed to Microsoft Azure in 2014 (for a time, Azure 

was on the TOP500 supercomputer list, before it dropped off it). In July 2010, Rackspace 

Hosting and NASA jointly launched an open-source cloud-software initiative known as 

OpenStack. The OpenStack project intended to help organizations offering cloud-computing 

services running on standard hardware. The early code came from NASA's Nebula platform 
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as well as from Rackspace's Cloud Files platform. In 2011, IBM announced the IBM Smart 

Cloud framework to support Smarter Planet. Among the various components of the Smarter 

Computing foundation, cloud computing is a critical part. In 2012, Oracle announced the 

Oracle Cloud. While aspects of the Oracle Cloud are still in development, this cloud offering 

is poised to be the first to provide users with access to an integrated set of IT solutions, 

including the Applications (SaaS), Platform (PaaS), and Infrastructure (IaaS) layers. In April 

of 2008, Google released Google App Engine in beta. In 2012, Google Compute Engine was 

released in preview, before being rolled out into General Availability in 2013.1  

 

The field is a combination of applied research on virtualization, fast Internet, memory 

computing, and firewall technologies. Bloomberg and Red Monk report some figures on the 

R&D expenditure of cloud computing companies.2 From 2014 to 2017, in percentage terms 

over their total R&D expenditure, IBM grew from 5% to 6%, Amazon from 8% to 12.5%, 

Microsoft from 13% to 15% Google from 12,5% to 16% and Oracle from 13% to 16%. In 

absolute terms, the available data show a substantial gap between the top-tier cloud providers 

(Amazon, Microsoft, and Google) and their competitors.  

 

2.4 Robotics 

Since the invention in 1954 of George Devol’s first digitally operated and programmable 

robot, sold to General Motors in 1960, the advancements of robotics are well documented in 

the literature since the field is well established and commercial and industrial robots are in 

widespread use. Robots are used in manufacturing, assembly and packing, transport, earth and 

space exploration, surgery, weaponry, laboratory research, and mass production of consumer 

and industrial goods. With recent advances in computer hardware and data management 

software, artificial representations of humans are also becoming widely spread, and artificial 

                                                
1 For an extensive analysis of Cloud Manufacturing see: Adamson et al. (2013), Caldarelli et al. (2016), Bughin et 
al., (2010), Wei et al., (2013), Wu et Al., (2015), Wu et al. (2013), Macia et al. (2012), Tao et al. (2011), (2014), 
Putnik (2012), Hashem et al. (2014), Mezgar, (2011), Park and Jong (2013), Ren et al. (2014), Zhang and Chai, 
(2010), Hossain, (2013), Majhi and Shial, (2015), Givehci, (2012), Givehu et al. (2013), Panetto and Molina, (2008). 
2 https://redmonk.com/rstephens/2017/09/26/cloud_rd/; https://iot-analytics.com/industrial-technology-trends-
industry-40-patents-12x/; https://www.reddie.co.uk/2015/08/28/cloud-computing-patents-and-the-art-of-semantics/. 
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intelligence and machine learning are contributing to the development of modern flexible 

robots. Fundamental components of the robotic industry are sensors, actuators, power 

conversion units, manipulators, and software. Relative to other fields, we have much better 

data on R&D expenditures and markets. As far as R&D expenditures are concerned, the three 

major spenders (KUKA, ABB and YASKAVA) account for more than 70% of sales, and 

increasing investments.3  

 

Industrial robots are typically classified in the following groups: SCARA, Articulated, 

Cartesian, Dual Arm and Co-bots. SCARA (Selective Compliance Assembly Robot Arm) is a 

type of robot which moves an "arm" on the horizontal plane and an outlet that can rise and 

fall in the vertical one. This type of robot was developed for high speed and repeatability in 

series assembly, such as Pick-and-Place from one place to another. An Articulated robot is a 

robot with rotary joints (e.g. a legged robot or an industrial robot), that can range from simple 

two-jointed structures to systems with ten or more interacting joints. They are powered by a 

variety of means, including electric motors. A Delta robot is a type of parallel robot. It consists 

of three arms connected by universal joints to the base. The key feature of the design is the 

use of parallelograms in the arms, which maintain the orientation of the end device. Delta 

robots are usually used in picking and packaging in factories because they are fast enough to 

run more than 300 outlets per minute. Cartesian robots (or Gantry robot) are used for pick-

and-place work, application of sealant, assembly operations, handling machine tools and arc 

welding. They are robots whose arms have three prismatic joints, and axes are coincident with 

a Cartesian coordinator. Dual Arm robots are robots in which each of a pair of robotic arms 

has an anthropomorphic elbow, and configurations with six joints: there are three joints at the 

wrist that support the gripper (the end-effector) and the arm itself has three more joints to 

position the wrist at the desired location. Finally, Cobots or co-robots (from collaborative 

robot) are robots designed to physically interact with humans in a shared workspace. This is 

in contrast with other robots, designed to operate autonomously or with limited guidance, 

which is what most industrial robots were up until the 2010s. 

                                                
3 Figures have been obtained from the three companies’ 2018 Annual Reports. 
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To date, the world market for industrial robots is worth about 11B$ (on a total of 27B$) with 

steady, if not especially fast, growth rates (International Robotic Federation, 2017). The 

market appears to be highly concentrated (in 2014 the top four manufacturers delivered robot 

units amounted to approximately 70% of the total robot units delivered worldwide in that 

year) and is signalling faster growth in easy-to-use collaborative robots, and a growing 

presence, through acquisitions, of new Chinese producers.  

 

2.5 Artificial Intelligence  

Attempts to mechanise human intelligence have a relatively long history (Nilsson, 2010), but the 

development of modern AI – the term was coined back in 1954 by John McCarthy as the topic of 

a conference at Dartmouth – is intimately related to progress in computing technologies and to 

recent advancements in machine learning and predictive processes. AI includes various areas of 

research and it is often difficult to draw precise boundaries. Its core components can however be 

identified with machine learning, deep learning, NLP (natural language processing) platforms, 

predictive APIs (application programming interface), image recognition and speech recognition.  

 

Global R&D spending in AI is fast increasing, both in the form of internal research in large tech 

firms’ labs (i.e. Goole and Baidu), but also through VC-backed start-ups, often financed by 

corporate investments. Investments appear to be in the order of $25 to $35 billion (MGI, 2018). 

Machine learning is the largest recipient of funds. Lee et al. (2018) note that the success of AI in 

industrial applications has so far been quite limited. However, industrial AI is fast improving as a 

systematic field of research, focused on developing, validating and deploying reliable machine 

learning algorithms for industrial applications. Demand for is also expected to growth significantly 

over the next few years, with early industrial adopters clustered in the finance and banking, retail 

and manufacturing sectors. Industrial applications have so far been concentrated in autonomous 

robots, digital assistants, neurocomputers, machine monitoring and control systems, and expert 

systems such as healthcare decision and smart grid systems.   
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2.6 Additive Manufacturing 

In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute published his 

account of a functional rapid prototyping system using photopolymers. A solid, printed model 

was built up in layers, each of which corresponded to a cross-sectional slice in the model. 

Then, the invention of stereolithography in 1984 let designers create 3D models with digital 

data, which could then be used to create tangible objects. The key to stereolithography is a 

kind of acrylic-based material known as photopolymer. The process starts with a hit on a vat 

of liquid photopolymer with a UV laser beam, so that the light-exposed portion turns into 

solid piece of plastic, and is then molded into the shape a 3D-model design. Interestingly, in 

that same decade (the 1980s) 3D printing crossed path with the open-source movement and 

this interaction continued over time until in 2005 Adrian Bowyer’s RepRap Project launched 

an open-source initiative to create a 3D printer that could essentially build itself, or at least 

print most of its own parts. The first 3D printing machine became commercially viable in 

2006, and this opened the door to on-demand manufacturing of industrial parts. 3D-printing 

start-up Objet (now merged with Stratasys) built a machine that could print in multiple 

materials, which allowed a single part to be fabricated in different versions and with different 

material properties. With the entry of MakerBot, an open-source DIY kit became available 

for makers to build their own 3D printers and products. With open source kits the barriers to 

entry for designers and inventors started to fall. While the price of 3D printers has fallen 

rapidly in recent years, the accuracy of 3D printing has significantly improved, and designers 

are no longer limited to printing with plastic.  

 

The field of 3D printing has been growing rapidly for years. It has applications in many sectors 

as diverse as healthcare, aerospace, and parts replacement. This is an industry with large 

commitment to R&D with three-year average year (2014-2017) spend of $309 million for all 

top six companies (Stratasys, Renishaw, 3D Systems, Organovo, ExOne, Arcam). 

Interestingly, Arcam has recently been acquired by General Electric for its multiple potential 

applications, ranging from aircraft components and medical equipment, to oil and gas 

equipment).  
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3. THE KNOWLEDGE BASES OF I4.0 ENABLING TECHNOLOGIES  

Having profiled the boundaries and building blocks of Industry 4.0, we now turn to an in-depth 

analysis of the knowledge bases of these technologies. We collected patent data for each enabling 

technology under examination. The main questions to be concern the distribution of inventive 

efforts, their patterns of accumulation, and their relations and similarities. 

 

3.1.  Data and sample construction 

Data were retrieved from the EPO-PATSTAT database (2019 Autumn Edition) but limitedly to 

granted United States Patent and Trademark Office (USPTO) patents filed between 1990 and 2014. 

Because of the relevance of the US market and the global nature of the actors involved, this choice 

does not introduce any significant home bias effects. We sampled patent records by following the 

search strategies documented in the literature and fully illustrated in Table 1, which also reports 

all the specific sources.   

 

<< INSERT TABLE 1 ABOUT HERE >> 

 

The final dataset includes 61,772 patents: of which 28,525 (46.18%) related to Robotics, 13,919 

(22.53%) related to Artificial Intelligence, 7,932 (12.84%) related to 3D Printing, 4,586 (7.42%) 

related to IoT, 3,588 (5.81%) related to Robotics, and 3,22 (5.22%) related to Cloud. The bar chart 

in Figure 2 shows a significant increase over time in the total number of patents filed each year. 

Plotting the 3-year average growth rates of patent grants indicates a decade of positive growth 

from the beginning of the 2000s onwards, with the only interruption caused by the 2008 Financial 

Crisis.   

 

<< INSERT FIGURE 2 ABOUT HERE >> 

 

Table 2 highlights differences in the number of patents and average growth rates over five periods 

(1990-1995; 1996-2000; 2001-2005; 2006-2010; 2011-2014) and across technologies. There are 

large variations across periods, but the data indicate strong growth for all technologies in the most 

recent period of the times series. 
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<< INSERT TABLE 2 ABOUT HERE >> 

 

3.2.  Geographical and organisational distribution of patents 

Patents carry essential information on who are the innovators and their geographical location.  The 

strong technological opportunities that characterise emerging technologies are generally 

associated with low level of concentration of innovative activities, high entry rates and turbulence 

in the ranking of innovators (Breschi, Malerba and Orsenigo, 2000; Malerba and Orsenigo, 1996a; 

1996b; 1997). Figure 3 displays the evolution of the concentration of the innovative activities in 

each enabling technology as measured by the C4 indicator and Herfindahl–Hirschman Index 

(HHI). 

 

<< INSERT FIGURE 3 ABOUT HERE >> 

 

C4 measures the share of patents filed by the top 4 innovators; whereas, HHI index captures the 

dispersion of these shares. Figure 3 indicates a general reduction in concentration levels, according 

to standard theory. The most significant falls in the indices throughout the whole period concern 

Cloud, Big Data and IoT. AI and Robotics display the steadiest patterns, while innovation in 3D 

printing becomes gradually less concentrated over time. Robotics and 3D printing are the 

technologies with the lowest concentration of innovation activities in the most recent period, which 

indicates the persistent presence of a high number of smaller-size players. 

 

<< INSERT FIGURE 4 ABOUT HERE >> 

 

Figure 4 reports the evolution of the Spearman correlation for the ranking of the top 20 inventors. 

The Spearman correlation picks up the extent to which two variables have similar ranks. It varies 

between -1 and 1, moving from an opposed to identical correlation. Spearman correlation can 

therefore be used to capture the degree of technological turbulence in a field. Figure 4 shows some 

differences among the six technologies under examination. Big Data and IoT show consistently 

high stability over time. AI and Cloud displayed relatively low stability (i.e. higher turbulence) 
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from 1995 to 2005, but their stability overall increased from 2005 onwards due to consolidation 

of technology leadership in these fields. 3D printing displays somewhat volatile patterns, with 

steady increases, indicating more stability in the group of top investors, over the last few years.  

 

<< INSERT TABLE 3 ABOUT HERE >> 

 

Besides these general trends, it is interesting to zoom into each technology and identify the top 

inventors. Table 3 reports the list of the top 4 inventors in each technology for the period 1990-

1995 and the period 2010-2014. With the exception of IBM’s performance in Big Data and AI, 

where the company is among the highest ranked players in both periods (and it reaches leadership 

in Cloud in the second period), the top positions are in the long run rather precarious.  The field of 

AI saw Google, Microsoft and Amazon inherit the top ranks from Hitachi, Mitsubishi and 

Matsushita in the top four. Beside IBM, SAP, Oracle and Dell take leadership in Big Data. In 

Cloud, we see among the top performers in the first period the US Navy and the University of 

California (this hints at the role of mission-oriented and fundamental research, respectively, in this 

particular field. In the second period Microsoft, Google and Oracle take top positions after IBM. 

Intel takes leadership over competitors in IoT, followed by telecommunications companies LG, 

Ericsson and Qualcomm. In 3D printing, two universities (University of Texas and MIT) are 

overtaken by specialist 3D manufacturer Stratasys and orthopaedics company Conformis, and 

large electronics conglomerates (GE and Siemens). Automotive companies Toyota and Ford take 

leadership in Robotics from robotics manufacturer Fanuc and Honda, followed by Google (this is 

the company’s third appearance in the top innovators after AI and Cloud) and Intuitive Surgical 

(whose entry in the top four ranks complements Conformis’ performance in 3D printing in 

indicating the growing role of medical applications). 

  

From a geographical point of view, we observe in Table 3 a very high concentration of activities 

in the United States, with Japanese companies losing top positions in AI, Big Data, and IoT. Table 

3 also reveals that technological leaders tend to overlap across the six enabling technologies. 

Strong complementarities in use could explain the tendency of these companies to develop 

technological capabilities that strand across all enabling technologies. The percentage of inventors 
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active in more than one technology in the period 1990-1995 is 35% of the set, increasing to 41% 

in the period 2010-2014.4  

 

<< INSERT FIGURE 5 ABOUT HERE >> 

 

Different patterns of entry can trigger different technological dynamics. While we observe an 

increasing number of inventors in each technology, it is important to distinguish whether they are 

really new entrants, or they just enter in a technology field while being active already in another 

technological space. An increase in the latter category can indicate patterns of consolidation 

between complementary technologies. Figure 5 shows that the share of entrants from another 

technology is overall increasing over time. Cloud and IoT attract the largest share of entrants from 

related technologies, Robotics the lowest, followed by AI. Note, however, that for AI this share 

increases over time.  

 

3.3. Sources and uses of technological knowledge 

The previous section focuses on technological relations based on patent citations (both backward 

and forward) and IPC classes. IPC classes are very informative about patents technological 

domain, but they cannot be straightforwardly related to industries. The two concepts can be tightly 

interrelated when they are both defined at a low level of granularity; however, numerous 

technologies cut across several industries. This section presents two specular exercises. First, we 

examine the industrial knowledge base used by the six enabling technologies to uncover common 

roots. Second, we examine the industrial applications of these enabling technologies to uncover 

joint applications. To carry out these two analyses we use data on the industrial classification of 

both the cited and citing patents of enabling technologies. Van Looy, Vereyen and Schmoch (2015) 

provides a concordance table between IPC classes and 2-digit NACE (Rev. 2), which makes it 

possible to associate any patent to one or more 2-digit NACE (Rev. 2) codes. The EPO-PATSTAT 

Database provides this information we use in this analysis.   

 

                                                
4 Unreported graphs (available upon request) of the distribution of patent portfolio size by number of technologies 
show that a limited group of very large multi-technology firms drives this trend. 
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<< INSERT TABLE 4 ABOUT HERE >> 

 

Table 4 shows backward citations over NACE classes and the C4 and HHI indices to evaluate their 

relative importance, thus indicating the industrial knowledge base behind each enabling 

technology. Table 4 reveals the presence of three patterns of use. AI, Big Data, Cloud and IoT 

have strong commonalities rooted in the manufacturing of computers, communication equipment, 

and office machinery. 3D Printings and Robotics display different industrial knowledge bases, 

including manufacturing of medical equipment and manufacturing of metal forming machinery 

and machine tools (both important for the two technologies) and more field-specific capabilities 

(e.g. Rubber and Plastics for 3D printing and Motor vehicles and Instruments for Robotics).  

 

<< INSERT FIGURE 6 ABOUT HERE >> 

 

Another way to identify common patterns of development is measuring the similarity of 

technological domains used by each enabling technology. Cosine similarity, which has been 

extensively used to measure technological distance with patent data (Jaffe, 1986; 1989), can be 

fruitfully adapted to this context. Proximity between firms is typically measured by comparing 

vectors that represent firms’ shares of patents in each patent class. In this case, the similarity in 

industrial knowledge bases can be measured by comparing vectors of the shares of cited industrial 

technological domain for each enabling technology in each year. Figure 6 presents the evolution 

of the cosine similarity in the used industrial knowledge base over time and across technologies. 

AI, Big Data and Cloud display remarkably stable patterns over time, which are rather similar to 

one another. This points to the presence of a long-term pattern of joint development between these 

three enabling technologies. IoT displays a falling trend (but always higher relative to 3D printing 

and Robotics) in the levels of similarity with AI, Big Data and Cloud. The second apparent trend 

is the increased convergence of 3D printing and Robotics. 

 

<< INSERT TABLE 5 ABOUT HERE >> 
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Table 5 reports forward citations shares over NACE classes and the C4 and HHI indices to evaluate 

their relative importance. This information is useful to identify the industrial classes of application 

of inventions developed within an enabling technology. AI, Big Data, Cloud and IoT appear to 

promote further technical advancement in the same industries, namely manufacturing of computer, 

communication equipment, and office machinery. Robotics also contributes to computer 

manufacturing, but shares with 3D printing medical device manufacturing as top field. The 

comparison of the C4 and HHI indicators presented in Table 4 and Table 5 indicates that industrial 

application is much more concentrated than the industrial knowledge bases, and concentration of 

industrial applications is always highest for Big Data and Cloud.  

 

<< INSERT FIGURE 7 ABOUT HERE >> 

 

Figure 7 reports the evolution of cosine similarity measures in the application industry. After an 

initial period of turbulence, as we saw for the technological knowledge bases the strongest 

similarities are between AI, Big Data, and Cloud. In this case, however, we also note similarity in 

industrial use between Cloud and IoT, which is consistent with qualitative evidence of joint 

deployment of Cloud and IoT. 3D Printing displays again patterns of complementarity in 

knowledge use with Robotics, with a marked decrease in the last two years of the period. Both 3D 

printing and Robotics appear to be diverging from all other technologies, and to find over time 

more specific areas of knowledge use. 

 

3.4.  The interrelation of knowledge bases 

After examining the technological and industrial similarity of the six enabling technologies, we 

now assess whether and to what extent these technologies are interrelated, that is to say how these 

technologies cross-fertilise each-other, by using cross-citations between patents. While we based 

our previous analysis on citations made and received from the universe of USPTO granted patents, 

in this section we examine “internal” citations within patent sets. Figure 8 reports for each enabling 

technology the share of citations made to patents related to a focal enabling technology. The first 

category is always the share of “self-citations”, i.e. citations between patents in the same enabling 

technology. Figure 9 reports similar graphs illustrating the shares of citations received by the 
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enabling technologies. The comparison of the two figures provides information on the evolution 

of the reciprocal positions of these technologies in an interrelated technology system. 

 

<< INSERT FIGURE 8 and 9 ABOUT HERE >> 

 

AI, 3D Printing and Robotics seem to be the technologies characterised by more independent 

development, with shares of self-citations constantly well above the 70% mark for both backward 

and forward citations. Big- Data, Cloud and IoT display more varied dynamics, indicating a more 

integrated position in the technological system. Big data tend to display patterns of cross-fertilising 

above all with AI. Cloud displays a variety of cross-technology citations, but a field becomes more 

self-referential in the most recent years, when within-field citations account for approximately 

80% of total citation. IoT follows a similar pattern to Cloud with increased within-technology 

citations over time, with the exception of the last two years, which display more variety.  

 

3.5.  ‘Enabling’ or ‘general purpose’ technologies? 

In this section we evaluate the extent to which the six enabling technologies can be considered as 

general purpose technologies (GPTs). Bresnahan and Trajtenberg (1995) define GPTs as 

technologies characterised by i) pervasiveness (i.e., with a broad range of possible application 

sectors), ii) high technological dynamism (i.e., significant potential for increasing efficiency), and 

iii) the ability to generate complementarities (i.e., their adoption stimulates rapid technical progress 

in the application sectors). How do our six enabling technologies fare against these three criteria? 

To empirically address this question, we follow the approach used by Moser and Nicholas (2004) 

in their study of Electricity as a GPT. We use regression analysis to examine how Industry 4.0 

patents score on three patent indicators – generality, originality, and longevity – generally 

associated with GPTs, as compared to other technologies.   

 

The generality index (GENERALITY) captures the range of later generations of inventions that 

have been promoted by a patent, by measuring the breath of technological classes citing that patent 

(Trajtenberg, Jaffe, and Henderson, 1997). This indicator is based on the HHI index and relies on 

information about the number of forward citations and their distribution across International Patent 
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Classification (IPC) technology classes. It ranges from 0 (when all the citations received from the 

patents are from the same technological classes) to 1 (when all the citations are equally spread 

across different technological classes). The larger the value of the index, the more technologically 

widespread the effect of a patent, in line with the definition of a GPT (Hall and Trajtenberg, 2004). 

 

The originality index (ORIGINALITY) is similar to the generality indicator, but it focuses on 

backward citations by measuring the range of technological classes that are cited by the patent 

(Trajtenberg, Jaffe, and Henderson, 1997). The more diverse the technological base upon which a 

patent is built, the more potential for novel recombination. This indicator is also based on the HHI 

index and relies on information about the number of backward citations and their distribution 

across IPC classes. It ranges from 0 (when all the citations made by a patent are from the same 

technological classes) to 1 (when all the citations are equally spread across different technological 

classes). High originality captures the high technological dynamism that is typical of GPTs 

(Trajtenberg, Jaffe, and Henderson, 1997; Moser and Nicholas, 2004). Finally, patent longevity 

measures the speed of obsolesce of a specific patent. As it was found for electricity (Moser and 

Nicholas; 2004), GPTs are expected to have lasting effects on subsequent technological 

development and therefore to become obsolete less fast. Following Moser and Nicholas (2004), 

we measure patent longevity as the average lag (in years) between the year of patent grant and the 

year of the latest forward citation (AV_LONGEVITY).5 All three indicators have been calculated 

using the EPO-PATSTAT Database (Autumn 2019 version).  

 

To assess the extent to which the technologies included in the Industry 4.0 paradigms are GPTs, 

we compare our set to patents to a control group. We select the control patents by randomly 

matching each patent in our set to up to five USPTO granted patents (without replacement) that 

are not related to one of the technology under examination (and neither is part of the same DOCDB 

                                                
5 Note that Moser and Nicholas (2004) measure longevity also as the maximum lag (in years) between the year of 
patent grant and the year of the latest forward citation. While we present the result using the average longevity, we 
also run the analysis using the maximum longevity and the results are qualitatively (i.e. sign and significance) 
similar. 
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family).6 This matching procedure ensures that the joint distribution of primary technological 

class, grant years, assignee type is balanced in the two samples. This control set does not provide 

an estimate of the exact counterfactual outcome. However, these comparison groups yield an 

estimate of the “average outcome” in a set of patents with similar characteristics.7 To complete the 

analysis, we also include two other variables that are the number of citations received by the 

patents in the first five years after the granting (FORW_CIT_5Y) and the number of IPC-classes 

listed in the patent document (NUM_IPC_CLASS).8  

 

<< INSERT TABLE 6 HERE >> 

 

Table 6 reports the results from nonparametric Mann-Whitney rank-sum tests of the null 

hypothesis that the median characteristics of patents related to Industry 4.0 are identical to the 

control sample. These tests show that patents related to Industry 4.0 are significantly less original 

and general than their controls. Conversely, patents related to Industry 4.0 are cited over longer 

periods, receive more citations in the 5 years after the application, and have a broader scope than 

the control patents. 

 

<< INSERT TABLE 7 HERE >> 

 

To confirm whether the difference in the generality indicator persists while controlling for some 

patent characteristics, we run a regression exercise. Table 7 reports three sets of results for different 

models’ specifications and the three dependent variables (i.e. generality, originality and average 

longevity). The main variable of interest is the dummy variable INDUSTRY_4_0, which takes 

value one if the patent is related to one of the six enabling technologies under examination, and 

zero if the patent is a matched control. The first three columns of each table panel present the 

results for the whole sample, while the last three focus on the subsample of patents whose 

                                                
6 The matching of at least one control patent was successful for 54,109 patents out of 61,322 starting set (88.2%), 
with the matching of 5 controls 87.6% of all the starting set. 
7 See Appendix A for the descriptive statistics of the sample. 
8 See Appendix A for a summary table of the variables used. 
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dependent variable is above the sample median. The top panel presents the results for 

GENERALITY where the dummy INDUSTRY_4_0 is always negative and significant, indicating 

that the patents in our sample are significantly less general than a comparable sample. The middle 

panel presents similar results for ORIGINALITY, where the dummy INDUSTRY_4_0 is either 

negative or insignificant. Finally, the bottom panel shows the results for AV_LONGEVITY, which 

confirms the finding of table 6. The dummy INDUSTRY_4_0 is always positive and significant, 

indicating that the patents in our sample are cited significantly longer than a comparable sample. 

All in all, even though these results are not clear cut, they provide some indication that the 

technologies under examination are not yet a GPTs. 

 

Following these results, in order to explore possible differences between the six technologies, we 

run the same regressions on each technology group. Figure 10 reports these results together with 

the estimate of the INDUSTRY_4_0 effect for the pooled sample.9  Figure 10(a) displays all the 

estimates for the technology dummy, indicating that for all technologies, except for Big Data, the 

patents are not more general than the matched controls. Also Figure 10(b) displays some 

heterogeneity, indicating that only AI and Big Data are more original than the matched controls. 

Finally, Figure 10(c) shows that all the technologies included in our sample are cited for longer 

timespans than the controls. However, when we focus the analysis on the longest-lived patents – 

the results on the patents whose longevity is above the median, some differences emerge. Patents 

related to Cloud technologies display lower longevity than the controls. This difference is 

statistically significant, while there is no statistically significant difference for AI and IoT relative 

to the counterfactuals. 

 

Taken together, these results have at least two interesting implications. First, they confirm the 

existence of significant heterogeneity between the technologies under investigation. Second, only 

Big Data and to a lesser extent AI shows the emergent characteristics of a GPT in terms of 

generality and originality, whereas the other technologies under examination are better framed – 

at least at this point in time – as enabling technologies rather than GPTs, despite the strong 

                                                
9 The complete estimation results of the split-sample analysis are available upon request.   
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longevity performance recorded for the most mature technology, that is 3D printing. There are two 

caveats. The first is that these enabling technologies might well develop into independent GPTs in 

the future.10 The second is that the test we have applied is rather strict in the identification of the 

control group, drawn from the same primary patent class as the focal sample. The results should 

therefore be interpreted as evidence that – with the exceptions of Big Data and AI – there is no 

strong indication across the board that these technologies are a dramatic departure from the ICT 

paradigm is which they operate.  

 

4. An integrated approach to the adoption of Industry 4.0 

Industry 4.0 is a combination of several technologies. The way in which the six enabling 

technologies might result in systemic disruptive change in the economy depends on how they will 

diffuse, more or less jointly, in adopting sectors, and on the way in which they will be adapted to 

different production and consumption needs as they diffuse. From the viewpoint of broad 

technological backgrounds, semiconductor and internet technologies, increasingly rich in AI 

content, are overall predominant components of Industry 4.0 systems. Given the information 

technology roots of these domains, it can be argued that so far we have been observing the 

continuation, or perhaps amplification, of the Third Industrial Revolution, rather than the clear-cut 

birth of a Fourth. It is however possible that we will soon see unprecedented and radically new 

uses of (combinations of) enabling technologies. Moreover, the most dramatic changes might not 

come from manufacturing at all but rather from the service sectors. 

 

<< INSERT TABLES 8 and 9 ABOUT HERE >> 

 

As far as manufacturing is concerned, it is difficult to find clear empirical evidence of a 

fundamental break between the adoption of ‘smart’ technologies and the adoption of ‘pre-smart’ 

technologies such as CAD/CAE/CAM. Overall the diffusion of Industry 4.0 appears to be patchy 

and heterogeneous across countries and sectors. After about four-five years from the introduction 

of all the major Industry 4.0 technologies, Table 6 presents estimates of the size of the markets for 

                                                
10 Note that regression analysis run over the six period we previously used (see table 2) shows that these results are 
consistent over the period under examination. 
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each enabling technology (note that artificial intelligence is here treated in its specific embodiment 

in advanced human-machine interfaces). The table shows that the largest market is by far Industrial 

IoT. Table 7 is an attempt to summarise what we know of the state of diffusion, with a synopsis of 

the major segments. It reports figures for: the worldwide installed base and/or percentage of 

adoption on the total target industry population; expected diffusion as per the latest growth rate 

estimates; diffusion by sector and geography; and key diffusion drivers. If we focus on the 

aggregate figures, there are around 2 billion IoT devices11, 850,000 industrial robots (including all 

robotic technologies), and 600.000 3D printers installed.12 In terms of growth rates (the growth of 

the installed base of systems and devices), there are clear indications of high growth in the IoT 

cluster and additive manufacturing, and slower growth in robots (a more mature segment) and 

advanced human-machine interfaces (a possible sign of the aforementioned difficulty to apply AI 

effectively to current production processes).13  

 

Germany is at the frontier of Industry 4.0 and emergent evidence on this context of adoption 

provides very useful insights. A recent study of 128 adoption cases across 500 production sites 

(IoT Analytics, 2016) uncovered a clear dichotomy between large companies, which are the most 

advanced buyers and lead users, and small and medium sized firms, which are lagging behind, 

suggesting cost and absorptive capacity barriers to adoption. Moreover, the majority of firms seem 

to have privileged ‘single technologies’ adoption paths while only few companies are undertaking 

a systemic (multi-technology) approach. Italy provides interesting contrasting evidence: despite 

the role played by the manufacturing sector in the structure of its economy (including exports), it 

is a context where the process of diffusion of ‘pre-smart’ technologies (e.g. CAD/CAE/CAM) has 

not yet been completed and the adoption of ‘smart’ technologies started significantly later than in 

Germany. A survey of 23,000 companies recently carried out by the Italian Ministry of Industry 

and Economic Development (MISE, 2018) illustrates the very slow uptake of Industry 4.0 

                                                
11 Note that this figure is somewhat ambiguous because it hides the relative weights of the different components of 
IoT systems. 
12 From IDC, Gartner, Morgan Stanley, and PWC latest market data. 
13 Regarding the geographical distribution of I4.0, it is interesting to notice in the figures for robotics that China is 
the largest adopter by absolute numbers, while South Korea, Japan and Germany are leading by intensity of 
adoption. 
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technologies: only 8.4% of manufacturing companies (most of which large) have made 

investments in this space, and only 4.7% intend to do so in the next three years, against estimates 

that show positive returns to adoption. As in the German case, firms that adopt a multi-technology 

approach are a minority. The same data indicate as main drivers of adoption increased 

competitiveness through greater production efficiency (e.g. due to cost optimization, and greater 

flexibility), and product quality improvement through minimization of production errors. Instead, 

the application of new business models figures prominently in the preferences of smaller firms.  

 

5.  Drivers of industrial change: a discussion and research agenda 

There are several unexplored aspects of I4.0 enabling technologies, whose study presents some of 

problems typically posed by emergent technologies. These include fluid boundaries and 

definitions, as well as fundamental uncertainty in their substantial patterns of growth and 

development. Despite difficulties in finding and structuring relevant data, there are (at least) three 

sets of questions of particular importance to gain better understanding of these enabling 

technologies and monitor their possible transformation in the general purpose technologies of a 

Fourth Industrial Revolution. The first questions concern the domain of industrial dynamics, the 

second standards, and the third government policy. 

 

Industrial dynamics 

The six enabling technologies display uneven patterns of concentration and market dynamics. IoT 

is probably the most important segment where industry dynamics will eventually influence the 

evolution of the whole Industry 4.0. Other than in sensors14, the segment is highly unstable and 

paths largely unpredictable. While sensors producers and telecom providers are capable of 

covering only their key area of specialization, and neither have strong competences in machine 

and processes nor ownership of the data produced, competition seems to be driven by machine 

producers, lead users and software companies. A particular challenge is the ongoing competition 

between proprietary vs. open source architectures. Additive manufacturing and robotics markets 

                                                
14 The sensors segment of the industry is relatively mature and will likely be driven by low energy consumption, 
smaller size, and cost minimisation objectives. 
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are relatively more mature. Additive manufacturing is strongly segmented in two different 

compartments (business and consumers) with different technologies and players. However, despite 

high barrier to entry in both segments, and also despite the fact that both segments depend on the 

quality of extruding technologies (this determines printing quality), the sector is still decisively 

unstable: after the expiration of key patents in 2014-2015, new industrial research has marked the 

entry of traditional printer players (such as HP), services players (such as Amazon) or software 

players (such as Autodesk), which could radically change the competitive landscape. Robotics has 

instead received new impulse by the aggressive entry of Chinese producers as well as the 

introduction of new materials, and advances in AI and its latest applications to human-machine 

interfaces. In turn, these are directly related to fast progress in big data and manufacturing 

analytics. Big data analytics features some of the major ICT players such as IBM (U.S.), General 

Electric (U.S.), Microsoft (U.S.), Oracle (U.S.), PTC Inc. (U.S.), SAP SE (Germany), Cisco (U.S.), 

Hewlett Packard (U.S), Hitachi (Japan), and SAS (U.S.). Interestingly, most large organizations in 

North America are choosing on-cloud deployment because of cheaper installation and ease of data 

retrieval (anytime, anywhere). Cloud computing is itself fragmented in Infrastructure-as-a-Service 

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) markets, depending on the 

degree of outsourcing. Moving from the former to the latter, there is an increasing level of 

efficiency (in terms of cost reduction), but also less control over data and software (the customer 

would typically deploy its own software on the infrastructure and platform). The three tiers are 

also characterized by different barrier to entry: SaaS has the lowest and new entrants can take 

advantage of low required initial investment and quick time to market (Catinean, 2013). For PaaS, 

in-house development and human capital constitute significant barriers, while IaaS requires 

substantial financial investment in order to build and support the Cloud infrastructure.  

 

Overall, the patterns of entry and industry growth differ within and across sectors, and some of the 

key segments presents the typical turbulence of fluid phases of technology life cycles. The 

presence of large players (e.g. Google, IBM) in related segments and related enabling technologies 

could, however, limit entry by small innovative firms and provide scope for agglomeration and 

diversification strategies.  
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Industry standards  

One of the most interesting areas for research, with implications for both industrial dynamics and 

the diffusion of I4.0 enabling technologies, is the problem of standards. Of paramount importance 

are legal standards for robotics and AI, and technical standards for the most highly networked 

technical systems, such as IoT and Cloud. The lack of standards is one of the most serious barriers 

to adoption. Beside the ethical issues of robotics and AI regulation, at the technology level the 

clearest tension is between the push for proprietary standards by early-stage global players, and 

the preference of adopters’ consortia for more open standards (such as the RAMI 4.0 architecture 

elaborated by “Platform Industrie 4.0” and the IIRA of the Industrial Internet Consortium).  

 

Standards allows interoperability in complex technical systems and this is precisely the problem 

faced by the IoT industry, where companies are joining different consortia and entering different 

alliances in order to generate the critical mass needed for the generation of voluntary de facto 

standards (among them, Auto-ID Lab and the Alliance for the Internet of Things Innovation 

(AIOTI), promoted by the European Commission). Other parts of the systems are under the control 

to standard setting bodies: RFID technologies, frequency and the format of data are under the remit 

of GS1, the European Telecommunications Standards Institute (ETSI) and ISO (Atzori et al. 

2010).15 The definition of standards is also related to broader regulatory issues. Firstly, 

competition, given the need to address new markets and their boundaries. Secondly, privacy, given 

the sensitive nature of the type of data smart objects will be able to gather.16 Thirdly, cyber 

security: as noted by Whitmore (2015), current approaches to cyber-security, mostly based on 

encryption, may not be feasible for smart objects with limited computing capabilities. Cloud is 

another domain strongly affected by the availability of standards or lack thereof. Cloud 

interoperability is a major issue (Dillon 2010), but there is no agreement of how best to address 

the problem. For example, IBM subscribed to the Open Cloud Manifesto (2009), but Microsoft 

and Amazon did not. Parallel standardisation initiatives are proliferating, led both by businesses 

alliances and by the main international standard-setting organizations (e.g. ISO, IEEE and the 

                                                
15 For the broader IoT architecture, ETSI is also play a role through its Machine-to-Machine Technical Committee.  
16 As noted by Weber (2011), there will be a need for extreme transparency in tracing the flows and type of data 
transmitted. 
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ITU).17  Moreover, the European Commission has specifically identified IoT and Cloud, together 

with cybersecurity and 5G communications) as essential technology building blocks of the Digital 

Single Market (REF). In summary, (interrelated) standards races and de jure standardisation 

processes will play a fundamental role in shaping the competitive environment, but whether these 

processes will follow the same lines of development of previous ITC standard making experiences 

remains an open question. At the moment, the technical and legal complexities of the problem, 

appear to be very distinctive of this phase of industrial growth and will deserve careful study.   

 

Government policy 

Enabling technologies are fast becoming a central part of a new wave of industrial policies, many 

of which are specifically designed to foster the development and diffusion of Industry 4.0. The 

IPOL Study Group on Industry 4.0 (European Parliament, 2016) describes a series of interventions 

that can be classified as:  

− integrated adoption processes and a strong cooperation between industry, trade unions and 

companies;  

− more targeted approaches focussing on individual technologies;  

− ‘neutral’ direct approaches (firms use subsidies but select their technology of choice); 

− ‘neutral’ indirect approaches (more standard tax incentives).  

Very often different policies coexist within the same country more or less coherently, and more or 

less related to a ‘mission-oriented’ approach to science and technology policy, or industrial policy 

more broadly. It is not clear which type of policy and which policy mixes will prove effective in 

supporting the competitiveness of different economies, especially if we consider that the same 

interventions may produce very different effects on systems that are structurally different in their 

production and application of I4.0 enabling technologies. This is an essential area for further 

research, not least because this level of policy intervention is related to other policy domain (above 

all labour policy) directly called into question by the revolutionary nature of emergent general 

purpose technologies.  

 

                                                
17 The European Commission is considering 5G communications, Cloud, IoT, (big) data technologies and 
cybersecurity as essential technology building blocks of the Digital Single Market. 
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6.  CONCLUSION 

Industry 4.0 is complex and heterogonous cluster of emergent technologies that contain the seeds 

of, but do not yet coincide with, the Fourth Industrial Revolution. In this paper we have identified 

and examined in some detail the six main components of the new digital economy, which has been 

growing out of the established semiconductor-cum-internet paradigm. As far as manufacturing is 

concerned, it is helpful to remember that is not the first time we have seen an attempt to implement 

systemic approach to automation. In the early nineties, CIM (Computer Integrated Manufacturing) 

was a top-down approach to translate a classic information system methodology into production 

facilities. It was not a success. It remains an empirical question whether and to what extent Industry 

4.0 will be radically different, or – put differently – how long it will take for enabling technologies 

to become fully fledged general purpose technologies and revolutionise production and 

consumption systems. At the moment, the two technology groups that give the strongest indication 

of following a trajectory leading to a GPT are Big Data and AI. 

 

It is , however, important to remember that many of the building blocks of Industry 4.0 have been 

around for many years: robotics and human-machine interfaces are based on the existing 

mechatronic industry; the use of sensors in machines has more than 20 years of history, and so do 

machines connected to computers; 3D printing is now more than 30 years old and even AI has 

been around for many years but has not had any obvious and fundamental impact on businesses. 

However, the introduction of complementary innovations are changing the potential application of 

known techniques: the introduction of low energy consumption in sensors, and their declining 

costs, are boosting their diffusion; advanced machine learning and deep learning are now 

beginning to drive automation; the introduction of cloud connectivity is delivering low cost 

processing power and pervasive interconnection; and finally, new ways to connect monitoring and 

management systems (the so ‘digital twins’). No easy prediction can be made about the aggregate 

outcomes of joint diffusion of complementary and incremental innovations. Much work remains 

to be done on heuristics at the base of the R&D processes in this space, their geographical and 

organisational distribution, the diffusion of technology, patters of concentration and industry 

dynamics (who will be the technology leaders of the future?), and their ultimate effects on growth, 

productivity and employment.  
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LIST OF TABLES 

Table 1 – Summary of the sampling strategy 

Technology & References CPC classes Keywords 
Internet of Things (IoT) 
 
Ardito, D'Adda, Messeni Petruzzelli 
(2018) "Mapping innovation dynamics 
in the Internet of Things domain: 
Evidence from patent analysis", 
Technological Forecasting & Social 
Change, 136, 317-333 on the basis of 
UK IP Office, 2014. The Internet of 
Things: A patent overview, UK 
Intellectual Property 
(IP) Office 

Derived from keywords: H04W4/70, Y02B70/3*, 
Y02B90/24, Y02D70/21 

 internet of \w1 thing\w\*, IIoT, Io\*T, ubicomp, 
ubiquitous computing, industrial internet, 
pervasive comput\w\*, ambient intelligence, 
smarter planet, smart dust, smart \w1 
device\w\*, connected \w1 device\w\*, 
networked \w1 device\w\*, digital life, web of 
thing\w\*, manchine to machine, M2M, smart 
meter\w\*, smart grid\w\*, smart home\w\*, 
internet of everything\w\* 

Cloud computing 
Huang (2015), Dotsika (2017), IPO big 
data report (2014), Buyya et al. (2013) 

Derived from keywords: G05B2219/32136 cloud comput\w\*, cloud securit\w\*, cloud 
technolog\w\*, cloud serv\w\*, cloud 
process\w\*, cloud software\w\*, cloud 
network\w\*, cloud infrastructure\w\*, cloud 
solution\w\*, cloud system\w\*, cloud 
data\w\*, cloud storage\w\*, cloud app\w\*, 
public cloud\w\*, private cloud\w\*, hybrid 
cloud\w\*, service orient\w\*, web service\w\*, 
utility orient\w\*, utility comput\w\*, cloud 
architectur\w\*, \w\*-as-a-service, Aneka, 
InterCloud, multitenan\w\*, OpenStack, 
Microsoft Azure, Cloudera, Amazon Web 
Services, AWS, Google Cloud Platform 

Big Data 
UK IP, 2014. Big Data & Energy Efficient 
Computing, UK Intellectual Property 
(IP) 

Conditional to keywords, from report: G06F 
17/3* (does not exist anymore, replaced by 
G06F 16/*), G06F 19/7* - G06F19/1* - 
G06F19/3* (do not exist anymore. Now, 
partially, G16Z 99* or G16B40/00, G16B50/00, 
G16H50/00, G16C20/70), G06Q 10/063*, G06Q 
30/02*, G06F 17/50* (does not exist anymore, 
now G06F 30/*), G06N/* 
 
Derived from keywords: G06F16/2465, 
G06F16/283, G06F2216/03 

big dat\w\*, open dat\w\*, data 
warehouse\w\*, hadoop, aster, datameer, fico 
blaze, vertica, platfora, splunk, mapreduce, 
crowdsourcing, data mining, data fusion, spark, 
biometrics, cassandra, nosql, behavioral 
analytics, business intelligence, HANA, hive, 
flume, kafka, elasticsearch 

Robotics 
UK IP Office, 2014.Eight great 
technologies: robotics and autonomous 
systems, UK Intellectual Property (IP) 
Office Available at. https:// 

Derived from reports: B25J9/16*, B25J9/20, 
B25J9/0003, B25J11/0005, B25J11/0015, 
B60W30/*, Y10S901/*, G05D1/0088, 
G05D1/02*, G05D1/03, G05D2201/0207, 
G05D2201/0212  
 
Derived from keywords: G05B2219/40*, 
G05D2201/0217, A61B34/3*, B25J9/0006, 
B25J9/065, G05D2201/0217 

robot\w\*, cobot, self driving \w3 \w\*car\w\*, 
self driving \w3 vehicle\w\*, self driving \w3 
automobile\w\*, self driving \w3 aircraft\w\*, 
self driving \w3 airplane\w\*, self driving \w3 
aeroplane\w\*, self driving \w3 
\w\*marine\w\*, driveless \w3 \w\*car\w\*, 
driveless \w3 vehicle\w\*, driveless \w3 
automobile\w\*, driveless \w3 aircraft\w\*, 
driveless \w3 airplane\w\*, driveless \w3 
aeroplane\w\*, driveless \w3 \w\*marine\w\*\, 
autonomous \w3 \w\*car\w\*, autonomous \w3 
vehicle\w\*, autonomous \w3 automobile\w\*, 
autonomous \w3 aircraft\w\*, autonomous \w3 
airplane\w\*, autonomous \w3 aeroplane\w\*, 
autonomous \w3 \w\*marine\w\*, automated 
\w3 \w\*car\w\*, automated \w3 vehicle\w\*, 
automated \w3 automobile\w\*, automated 
\w3 aircraft\w\*, automated \w3 airplane\w\*, 
automated \w3 aeroplane\w\*, automated \w3 
\w\*marine\w\*, unmanned \w3 \w\*car\w\*, 
unmanned \w3 vehicle\w\*, unmanned \w3 
automobile\w\*, unmanned \w3 aircraft\w\*, 
unmanned \w3 airplane\w\*, unmanned \w3 
aeroplane\w\*, unmanned \w3 \w\*marine\w\* 
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Table 2 – Summary of the sampling strategy (cont.) 

Technology & References CPC classes Key-words 
3D printing 
 
UK IP Office, 2013.3D printing: a patent overview, 
UK Intellectual Property (IP) Office Available at. 
https://www.gov.uk/government/publications/3d-
printing-a-patent-overview 

New class: B33Y: additive manufacturing  
Derived from report: B29C67/0051* (does not 
exist anymore), B22F3/1055, B22F 
2003/1056, B22F 2003/1057, B22F 
2003/1058, B22F 2003/1059, B23K9/04*, 
B23K10/027, B23K11/0013, B23K15/0086, 
B23K20/1215, B23K25/005, B23K26/34, 
B23K26/342,  
Additional, from keywords: B29C64/*, 
Y02P10/29* 

3D \w1 print\w\*, additive \w1 
manufactur\w\*, additive \w1 fabrication, 3D 
\w1 manufactor\w\*, 3D \w1 fabrication, 
rapid \w1 prototyp\w\*, rapid \w1 
manufact\w\*, selective laser 
deposition\w\*, selective laser 
manufactur\w\*, laminate object 
manufactur\w\*, fuse deposition model\w\* 

AI 
Webb, N. Short, N. Bloom and J. Lerner (2018) 
"Some Facts of High-Tech Patenting", NBER 
Working Paper 24793 

Derived from WIPO report and keyword 

search (intersection): Y10S706/*, G06N20/*, 
G06N7/02*, G06N7/005, G06N3/02, 
G06T2207/20081, G06T2207/20084, 
G06T3/4046, G06T9/002, G05B13/027, 
G05B13/0275, G05B13/028, G05B13/0285, 
G05B13/029, G05B13/0295, G10L15/16, 
Y10S128/924, Y10S128/925, F02D41/1405, 
B29C66/965, B29C66/966, F03D7/046, 
F05B2270/707, F05B2270/709, 
F16H2061/0081, F16H2061/0084, 
G10K2210/3038, G10L25/30, G10L25/33, 
H04N21/4666 

artific\w\* \w1 intelligen\w\*, 
computation\w\* \w1 intelligen\w\*, neural 
\w1 network\w\*, bayesian \w1 
network\w\*, chatbot\w\*, data \w1 
mining\w\*, decision \w1 model\w\*, deep 
\w1 learn\w\*, genetic \w1 algorithm\w\*, 
inductive \w1 logic \w1 programm\w\*, 
machine \w1 learn\w\*, natural \w1 
language \w1 generation\w\*, natural \w1 
language \w1 process\w\*, reinforcement 
\w1 learn\w\*, \w\*supervised \w1 
learn\w\*, \w\*supervised \w1 train\w\*, 
swarm \w1 intelligen\w\*, connectionis\w\*, 
expert \w1 system\w\*, fuzzy \w1 logic\w\*, 
transfer \w1 learn\w\*, learning \w3 
algorithm\w\*, learing \ w1 model, support 
vector machine\w\*, random forest\w\*, 
decision tree\w\*, gradient model boosting, 
xgboost, adaboost, rankboost, logistic 
regression\w\*, stochastic gradient descent, 
multilayer perceptron, latent semantic 
analysis, latent dirichelet allocation, multi 
agent system\w\*, hidden markov 
model\w\* 

 
 
 
 

 
 

Table 3 - Number of patents and growth rate by technology 
 1990-1995 1996-2000 2001-2005 2006-2010 2011-2014 

 NUM 
PATENTS 

AV. 
GROWTH 

RATE 

NUM 
PATEN

TS 

AV. 
GROWTH 

RATE 

NUM 
PATENTS 

AV. 
GROWTH 

RATE 

NUM 
PATENTS 

AV. 
GROWT
H RATE 

NUM 
PATENT

S 

AV. 
GROWT
H RATE 

AI 2415 13% 2202 0% 2010 -2% 2780 8% 4512 24% 
BIG_DATA 39 81% 437 54% 838 3% 972 4% 1302 21% 

CLOUD 7 0% 12 78% 65 57% 703 60% 2435 26% 
IOT 57 40% 187 39% 352 7% 624 28% 3366 54% 

PRINTING_3D 580 26% 1039 11% 1721 6% 1987 4% 2605 22% 
ROBOTICS 2887 5% 3601 10% 5013 4% 6787 7% 10237 20% 

TOTAL 4197 14% 6288 11% 9999 3% 13853 9% 24457 24% 
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Table 4 - Top Innovators over time and technology 
 Top Innovators (1990-1995) Top Innovators (2010-2014) 
 country company share country company share 

AI 

JP HITACHI 4.97% US IBM 9.50% 
JP MITSUBISHI 4.75% US GOOGLE 6.12% 
US IBM 4.71% US MICROSOFT 4.86% 
JP MATSUSHITA 2.79% US AMAZON 2.13% 

BIG_DATA 

US IBM 47.37% US IBM 13.86% 
US RCA 10.53% DE SAP 5.48% 
JP FUJITSU 5.26% US ORACLE 3.76% 
US MICROSOFT 5.26% US DELL 3.76% 
US HONEYWELL 5.26%       

CLOUD 

US US NAVY  25.00% US IBM 13.82% 
US UNIVERSITY OF CALIFORNI 25.00% US MICROSOFT 5.71% 
US HEWLETT PACKARD 25.00% US GOOGLE 3.68% 
DE SIEMENS 25.00% US ORACLE 2.92% 

IOT 

US ACRES GAMING 10.53% US INTEL 12.34% 
US XEROX 8.77% KR LG 9.64% 
US TEXAS INSTRUMENTS 7.02% SE ERICSSON 5.99% 
JP RICOH 5.26% US QUALCOMM 4.01% 
US MOTOROLA 5.26%       
US QUALCOMM 5.26%       

PRINTING_3D 

US 3D SYSTEMS 10.38% US STRATASYS 4.38% 
US UNIVERSITY OF TEXAS 3.85% US GENERAL ELECTRIC 2.42% 
SW CIBA 3.46% US CONFORMIS 2.19% 
US MIT 3.27% DE SIEMENS 2.19% 

ROBOTICS 

JP FANUC 4.82% JP TOYOTA 5.21% 
US HONDA 3.25% US FORD 4.26% 
US MITSUBISHI 2.29% US GOOGLE 2.85% 
US HITACHI 2.26% US INTUITIVE SURGICAL 2.64% 
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Table 5 - Top used industrial knowledge base domain 
  USING INDUSTRIAL KNOWLEDGE DOMAIN Share C4 HHI 

AI 

26.2 Manufacture of computers and peripheral equipment 40% 

0.200 0.701 
26.3 Manufacture of Communication Equipment 13% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 
12% 

62 Computer Programming, Consultancy and Related Activities 5% 

BIG_DATA 

26.2 Manufacture of computers and peripheral equipment 64% 

0.437 0.911 
26.3 Manufacture of Communication Equipment 12% 
62 Computer Programming, Consultancy and Related Activities 10% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 
5% 

CLOUD 

26.2 Manufacture of computers and peripheral equipment 59% 

0.407 0.922 
26.3 Manufacture of Communication Equipment 24% 
62 Computer Programming, Consultancy and Related Activities 6% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 
3% 

IOT 

26.3 Manufacture of Communication Equipment 50% 

0.291 0.784 

26.2 Manufacture of computers and peripheral equipment 19% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 
6% 

26.5 
Manufacture of Instruments and Appliances for Measuring, Testing and 

Navigation; Watches and Clocks 
4% 

PRINTING_3D 

32.5 Manufacture of medical and dental instruments and supplies 25% 

0.097 0.495 
22 Manufacture of Rubber and Plastic Products 11% 

26.1 Manufacture of Electronic Components and Boards 7% 
28.4 Manufacture of Metal Forming Machinery and Machine Tools 6% 

ROBOTICS 

32.5 Manufacture of medical and dental instruments and supplies 30% 

0.120 0.540 
29.1 Manufacture of Motor Vehicles 9% 

26.5 
Manufacture of Instruments and Appliances for Measuring, Testing and 

Navigation; Watches and Clocks 
8% 

28.4 Manufacture of Metal Forming Machinery and Machine Tools 8% 
 

 
Table 6 – Top sourced industrial knowledge base domain 

    USED INDUSTRIAL KNOWLEDGE DOMAIN Share C4 HHI 

AI 

26.2 Manufacture of computers and peripheral equipment  36% 

0.179 0.692 
26.3 Manufacture of Communication Equipment  12% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment)  
12% 

62 Computer Programming, Consultancy and Related Activities  8% 

BIG_DATA 

26.2 Manufacture of computers and peripheral equipment  67% 

0.479 0.954 
62 Computer Programming, Consultancy and Related Activities  13% 

26.3 Manufacture of Communication Equipment  12% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment)  
4% 

CLOUD 

26.2 Manufacture of computers and peripheral equipment  44% 

0.341 0.906 

26.3 Manufacture of Communication Equipment  38% 

62 Computer Programming, Consultancy and Related Activities  5% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment)  
4% 

IOT 

26.3 Manufacture of Communication Equipment  35% 

0.194 0.763 
26.2 Manufacture of computers and peripheral equipment  22% 

28.23 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment)  
10% 

32 Other Manufacturing  10% 

PRINTING_3
D 

32.5 Manufacture of medical and dental instruments and supplies  21% 

0.096 0.542 
22 Manufacture of Rubber and Plastic Products  15% 

28.9 Manufacture of Other Special-Purpose Machinery   9% 

26.1 Manufacture of Electronic Components and Boards  8% 

ROBOTICS 
32.5 Manufacture of medical and dental instruments and supplies  28% 

0.111 0.502 26.2 Manufacture of computers and peripheral equipment  9% 
29.1 Manufacture of Motor Vehicles  7% 
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26.5 
Manufacture of Instruments and Appliances for Measuring, Testing and 

Navigation; Watches and Clocks  
7% 

 

Table 6 – Mann-Whitney test 

Variable H0: Industry_4_0=Control 

ORIGINALITY 54.178*** 
GENERALITY 3.214*** 

AV_LONGEVITY_Y -27.926*** 
MAX_LONGEVITY_Y -28.652*** 

FORW_CIT_5Y -51.332*** 
NUM_CLASS -44.721*** 

Legend: *** Statistically significant at the 1%  
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Table 7 – Regression results 

DV: GENERALITY 

 FULL SAMPLE GENERALITY ABOVE THE MEDIAN 
 (1) (2) (3) (4) (5) (6) 

INDUSTRY_4_0 -0.013*** -0.008*** -0.008*** -0.028*** -0.020*** -0.021*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

FORW_CIT_5Y  -0.001*** -0.001***  -0.003*** -0.003*** 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLASS  -0.004*** -0.003***  -0.006*** -0.005*** 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLAIMS  -0.000*** -0.000***  -0.001*** -0.001*** 
  (0.00) (0.00)  (0.00) (0.00) 

Constant 0.092*** 0.111*** 0.119*** 0.142*** 0.175*** 0.227*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

YEAR DUMMY YES YES NO YES YES YES 
MATCHED GROUP FIXED EFFECT NO NO YES NO NO NO 

Observations 323652 323652 323652 161781 161781 161781 
R-square 0.0243 0.0354 0.211 0.0366 0.0644 0.373 

       
DV: ORIGINALITY 

 FULL SAMPLE ORIGINALITY ABOVE THE MEDIAN 
 (1) (2) (3) (4) (5) (6) 

INDUSTRY_4_0 -0.018*** -0.011*** -0.011*** -0.004*** 0.000 -0.001 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

FORW_CIT_5Y  -0.000*** -0.001***  -0.001*** -0.001*** 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLASS  -0.006*** -0.005***  -0.008*** -0.007*** 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLAIMS  -0.000*** -0.001***  -0.000*** -0.001*** 
  (0.00) (0.00)  (0.00) (0.00) 

Constant 0.155*** 0.184*** 0.140*** 0.198*** 0.230*** 0.205*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

YEAR DUMMY YES YES NO YES YES YES 
MATCHED GROUP FIXED EFFECT NO NO YES NO NO NO 

Observations 323652 323652 323652 161814 161814 161814 
R-square 0.0186 0.0506 0.243 0.00662 0.0230 0.337 

       
DV: LONGEVITY 

 FULL SAMPLE LONGEVITY ABOVE THE MEDIAN 
 (1) (2) (3) (4) (5) (6) 

INDUSTRY_4_0 0.479*** 0.428*** 0.440*** 0.263*** 0.314*** 0.344*** 
 (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) 

FORW_CIT_5Y  0.030*** 0.027***  -0.026*** -0.031*** 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLASS  -0.036*** -0.020***  -0.007*** -0.003 
  (0.00) (0.00)  (0.00) (0.00) 

NUM_CLAIMS  0.022*** 0.013***  0.002*** 0.004*** 
  (0.00) (0.00)  (0.00) (0.00) 

Constant 11.585*** 11.294*** 3.778*** 12.247*** 12.357*** 7.678*** 
 (0.08) (0.08) (0.01) (0.07) (0.07) (0.01) 

YEAR DUMMY YES YES NO YES YES YES 
MATCHED GROUP FIXED EFFECT NO NO YES NO NO NO 
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Observations 323652 323652 323652 157802 157802 157802 
R-square 0.608 0.617 0.729 0.520 0.526 0.657 

Note: All the models are estimated using Ordinary Least Square. Robust standard errors in brackets. Legend: *Significant at 10%, ** Significant at 
5%, *** Significant at 1%. 

 

 

 

Table 8 - Industry 4.0 Worldwide turn over 

  Industral IoT 
Cloud 

Manufacturing 
Manufacturing 

Analytics 
Advanced 
Robotics 

Advanced 
Human-

Machine Int. 

Additive 
Manufacturing 

ICT 
Industry 

Turn Over 
(2015-2016) 

200 B $ (on a 
total of 1,000 

B$, savvy 
estimate) 

8 B$, (on a total 
of 23 B $ 

including ERP 
and CRM Cloud) 

3,2 B$ on a 
total of 17B$) 

11B$ (on a 
total of 
27B$) 

1 B $ (on a 
total of 2,6 

B$) 
6 B $ 3.5 T $ 

Expected 5 Yrs 
CAGR 

25-30 % 25% 21% 5-8 % 8-9% 20% 2% 

Sources 

IDC, IC 
Market 

Drivers, IooT 
Analytics, 
Gartner 

Gartner, IDC, 
Cisco 

Markets and 
Market, IDC 

BI 
Intelligenc
e, World 
Robotics 

Market and 
Markets, 

Grand View 
Research 

Market and 
Markets, IDC 

Gartner, 
IDC 
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Table 9 – Industry 4.0 diffusion 

  IIoT Cloud Manufacturing Manufacturing Analytics Advanced Robotics Advanced Human 
Machine Interface 

Additive 
Manufacturing 

Installed base 
or % adoption 

IIoT=2B devices on a 
total of 12B Installed 

devices (all IoT) 

Global Cloud penetration 
is: 10% of companies are 
adopting private cloud 
and 20 % public cloud, 

driven by large companies 
(more than 30% overall 

adoption) 

Statistic on different 
manufacturing analytics’ 

global adoption:  
Inventory Management 

20%, Plant Quality 
Management 7%, Plant 

Simulation 5%, Plant 
Analytics 10%, Predictive 

maintenance 7% 

850 K installed devices  12 M devices 
(Industry only) 600 K Installed Base 

Expected 
growth rate 30% 30% 30% 5% 10% 29% 

Diffusion by 
Sector 

IIoT about 25% of 
total installed base 

(Oil and Gas Leading) 
Overall: Connected 
Cities = more than 

50% of total installed 
base 

Manufacturing 
15%,Aerospace 13%, 
Parma Consumer and 
Automobile each 13% 

penetration 

NA 
Automotive 50%, 

Electrical/Electronics 15%  
Metal/Machinery 10% 

Automotive, Oil & 
Gas, Packaging, 
Aerospace and 

Defense, Food and 
Beverage, 

Installed base 
distribution: Consumer 

Products 20% 
Automobile 20% 

Medical 15% 
Aerospace 15%  

Geography APAC=US =Europe LATAM 40 %, APAC 30%, 
US 20 % Europe 15% NA 

Sales in 2015: China 
leading country 70 k, 

Korea, 35 k, Japan 35, US 
27k, Germany 20 k 

NA 40% APAC 30% 
Europe 20%, China 

and India fast 
growing countries 

40% NA, 28% Europe, 
27% APAC  

Drivers 

IIoT: Revenue Growth 
more than cost 

cutting Predictive 
maintenance Product 

Control  

Search for more flexibility 
and scalability, Big Data, 

move to Opex, less 
important cost reduction 

Search for New revenue 
streams and reduce cost. 

Pressure to increase 
customer satisfaction and 

product quality 

Cost drivers, Unit price 
decrease, Product Quality 

improvements (Word 
Robotics 2016) 

New industrial 
automation plants, 

operational 
efficiency 

Prototyping, product 
Development, 

Increased efficiency, 
cost reduction 

Sources 

IDC, IC Market 
Drivers, IIoT 

Analytics, Gartner, 
Cisco 

IDC, Morgan Stanley, 451 
Group, TATA consulting 

Serv. 
IDC for HP, Oracle BI Intelligence, World 

Robotics 

Markets and 
Market, Global 

Industry Analyst Inc. 

IDC, Morgan Stanley, 
Wholers, Fathom 

Research 
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Figure 1 - A Graphical Representation of Industry 4.0 (Source: Authors) 
 

 
 

 

Figure 2 - Time evolution and growth rate 

 

Source: Authors calculations 
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Figure 3 – Evolution of the concentration of innovative activities across technology 

 

Source: Authors calculations 

Figure 4 - Evolution of the stability of innovative activity across technology 

 

Source: Authors calculations 

Figure 5 - Patterns of entry over time and across technology 
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Source: Authors calculations 

Figure 6 - Similarity of used industrial knowledge base by technology 
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Figure 7 - Similarity of using industrial knowledge base by technology 
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Figure 8 - Distribution of cited patents between enabling technologies 
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Figure 9 - Distribution of citing patents between enabling technologies 
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Figure 10 – Regression results for the split sample analysis on each technology 

(a) Dependent variable: Generality 

 
Legend: The estimation for the Industry 4.0 correspond to the results displayed in Table 7 column 3 (left side) and 6 (right side). 
The other presented estimates are derived from the same specification models run on the six technology subsample. The 95% 
confidence intervals are also reported 

 

(b) Dependent variable: Originality 

 
Legend: The estimation for the Industry 4.0 correspond to the results displayed in Table 7 column 3 (left side) and 6 (right side). 
The other presented estimates are derived from the same specification models run on the six technology subsample. The 95% 
confidence intervals are also reported 
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(c) Dependent variable: Average Longevity 

 
Legend: The estimation for the Industry 4.0 correspond to the results displayed in Table 7 column 3 (left side) and 6 (right side). 
The other presented estimates are derived from the same specification models run on the six technology subsample. The 95% 
confidence intervals are also reported 
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APPENDIX A 

Table A1 – Descriptive statistics of the set of patents related to Industry 4.0 and the control 

patent 

PATENTS RELATED TO INDUSTRY 4.0 
Variable Obs Mean Median SD Min Max 

ORIGINALITY 54109 0.0891 0.055 0.115 0 1 
GENERALITY 54109 0.0869 0.0449 0.138 0 1 

AVERAGE_LONGEVITY 54109 4.49 3.5 4.38 0 26.5 
MAX_LONGEVITY 54109 6.85 5 7.14 0 29 

FORW_CIT_5Y 54109 4.56 2 13.5 0 401 
NUM_CLASS 54109 4.8 4 4.45 1 80 

CONTROL PATENTS 
Variable Obs Mean Median SD Min Max 

ORIGINALITY 269543 0.107 0.07 0.127 0 1 
GENERALITY 269543 0.0999 0.0496 0.158 0 1 

AVERAGE_LONGEVITY 269543 4 3 4.3 0 28 
MAX_LONGEVITY 269543 6.08 4 6.99 0 29 

FORW_CIT_5Y 269543 2.86 1 7.38 0 340 
NUM_CLASS 269543 3.91 3 3.18 1 113 

 

Table A2 – List of variables and sources 

Variable Description Source 

GENERALITY 
1-HHIp where HHIp is the Hirschman-Herfindahl 

Index of the shares of the IPC classes (8-digit) of the citing 
patents (forward citations) in the first 5 years after the granting. Our calculations using the 

EPO-PATSTAT Database 
(Autumn 2019) ORIGINALITY 

1-HHIp where HHIp is the Hirschman-Herfindahl 
Index of the shares of the IPC classes (8-digit) of the cited 

patents (backward citations). 
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AV_LONGEVITY_Y Average number of years between the filing of the patent and 
the latest forward citation 

MAX_LONGEVITY_Y Maximum number of years between the filing of the patent and 
the latest forward citation 

FORW_CIT_5Y Number of citations received by the patents in the 5 year after 
the patent grant 

NUM_CLASS Number of distinct 4-digit IPC class listed in the patents 

 

 

 


