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Abstract

This paper analyzes the implications of different designs of policies, which aim to
contain the diffusion of the SARS-CoV-2 virus, with respect to induced economic loss
and virus mortality. An agent-based simulation model is implemented and calibrated
with German data, which combines the representation of a simple multi-sectoral closed
economy with the explicit incorporation of virus transmission channels at the work-
place, during shopping activities and other social contacts. It is demonstrated that
under a policy resembling German containment measures the model closely reproduces
the dynamics of pandemic and economic variables in the aftermath of the COVID-19
outbreak in Germany. Exploring alternative policy designs shows that any efficient
policy should impose a low threshold of newly infected for moving from the lock-down
to the opening-up stage and in the opening-up stage all restrictions on economic ac-
tivity should be lifted. With respect to the reduction of consumption activities during
the lock-down a trade-off between the induced GDP loss and the resulting mortality
emerges. Regardless of the chosen design of the containment measures, the introduc-
tion of complementary economic support measures substantially reduces the induced
GDP loss and leads to a reduction of the public debt accumulated during the consid-
ered time interval. The efficient design of containment policies changes substantially
if lifting economic restrictions during the opening-up stage also results in reduced
effectiveness of the individual prevention measures by agents.

Key Words: COVID-19, economic loss, containment policy, exit strategy, agent-based
modeling

1 Introduction
The outbreak of the COVID-19 pandemic in a large number of countries all over the globe
after November 2019 has lead to the introduction of partly severe containment measures
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in most of the affected regions. Many of these measures have substantial implications
for economic activity. Examples in this respect are the closure of stores, restaurants and
other business outlets, the increased use of home-office, travel-bans or complete lock-downs
preventing potential customers or service providers to interact. There is a substantial
heterogeneity in the measures implemented by different policy makers1 and in light of the
severe economic downturn resulting from the COVID-19 pandemic and its containment
it is crucial to develop a thorough understanding of the joint dynamic epidemiological
(number of infected, mortality) and economic (GDP loss, sectoral unemployment) effects
of the different measures. Whereas well-established epidemiological models (see Kissler
et al. (2020)) can be employed to address the first of these issues, rigorous approaches for
studying simultaneously the dynamics of the transmission of the virus and of economic
activity are still sparse. Considering these two aspects in an integrated framework is
important not only because many containment measures have direct economic effects, but
also because several main infection channels are directly related to economic activity. In
particular, this applies to the potential transmission of the virus at the work-place, at
stores and during the consumption of services.
In this paper we analyze epidemic and economic implications of different policies based

on a unified dynamic agent-based simulation model populated by age-structured house-
holds (young/old) and heterogeneous firms, which incorporates both the spreading of an in-
fectious and potentially mortal virus in the population and a simple multi-sectoral macroe-
conomic structure. The dynamics of the transmission of the virus between individuals is
based on a standard SIRD model with three channels for contacts between agents: i) meet-
ings at the workplace, ii) contacts while purchasing consumption goods and consuming
services and iii) private meetings. From an economic perspective we depict a simple pro-
duction economy with one public and three private sectors (manufacturing, service, food)
populated by heterogeneous firms. Sectors differ with respect to the firms’ average labor
productivity and the average number of contacts between agents when purchasing and
consuming the good. Relying on an agent-based approach, we explicitly model the evolu-
tion of the workforce of each employer as well as the exact interactions between consumers
and producers, which allows us to keep track of the number and structure of contacts asso-
ciated with the different economic activities. This detailed representation of the economic
interaction structure allows us to represent a wide range of specific measures associated
with virus containment policies in our modeling framework. That includes temporary
(partial) closures of stores in different sectors, (sector-specific) changes in the frequency
of home-office, changes in the (age-specific) shopping and private meeting patterns and
also economic support policies like firm bailouts and public support for workers whose
job is jeopardized due to the economic effects of the pandemic. This richness in struc-
ture distinguishes our approach from existing unified theoretical studies of economic and
epidemiological dynamics (see e.g. Eichenbaum et al. (2020); Krueger et al. (2020); Ace-
moglu et al. (2020)), which rely on substantially more abstract models and do not allow
to distinguish between different types of policy measures in a detailed way comparable to
our setting.
The design of the economic part of the model, in particular with respect to the structure

of the individual decision rules as well as the market interaction protocols, builds strongly
on a well established agent-based macroeconomic framework, namely the Eurace@Unibi
model, which has been already used for the analysis of a wide range of economic policy

1See http://covid19-interventions.com/ and https://www.imf.org/en/Topics/imf-and-covid19/
Policy-Responses-to-COVID-19 for an international comparison of policy responses to the COVID-19
threat.
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issues (e.g. Dawid et al. (2014, 2018, 2019)). Nevertheless, the model employed here is not
an extension of the Eurace@Unibi model, but a separate agent-based model designed for
the analysis of the interplay of economic activities and virus transmission, which has also
been implemented independently from the Eurace@Unibi model.2 For the parametrization
of the model, on the one hand we rely on established empirically founded parameter
values from the Eurace@Unibi model, and, on the other hand, we employ a large range
of empirical sources. Apart from epidemiological data we use studies about the structure
of contacts emerging from work, consumption activities and private meetings, about the
sector specific maximal fraction of workers who can move to home office as well as about the
fraction of actually infected individuals who are also reported to be infected. The number
of intensive care units in the model and age dependent individual case fatality (depending
on the utilization of the intensive care units) are taken from German data as well as the
values for sector-specific average labor productivity and the demographic structure of the
household population. The probability that a susceptible individual gets infected at a
single contact to an infectious individual is calibrated such that the model generates an
initial reproduction factor of R0 around 2.7 in the absence of containment measures, which
lies within the interval of [2.5,3], which has been empirically estimated for this factor (see
e.g. Read et al. (2020)). We establish empirical credibility for our framework by showing
that the calibrated model does not only generate (stationary) unemployment and GDP
dynamics closely resembling German data, but is also able to reproduce the actual dynamic
evolution of the reported number of infected and the reproduction factor R0 for the time
window between the early occurrence of the virus in Germany (March 9, 2020) and a point
in time after relaxation of the most stringent containment measures (May 9, 2020)3.
Our policy analysis then proceeds in three steps. First we compare the effect of different

designs of the containment policy on the dynamics of infected households and mortality
of the virus as well as on key economic indicators, in particular GDP loss relative to the
status-quo before the outbreak of the virus.4 We assume that all policy responses induce
individual prevention measures by all agents, thereby reducing the infection probability
at each contact between an infectious and a susceptible agent. Also, we assume that
as long as no vaccine is available, a fraction of workers is in home office. Additionally,
the policy might foresee constraints with respect to private contacts and a restriction of
the possibilities for consumption of manufacturing and service goods. All containment
policies have two stages, a ’lock-down stage’ and an ’opening-up stage’, and each policy is
characterized by three key parameters: i) the amount of restrictions in the lock-down stage;
ii) the amount of restrictions in the opening-up stage; iii) the timing of the transition from
lock-down to opening-up (and potentially vice-versa) expressed as a threshold for reported
newly infected per week below (above) which the lock-down stage is ended (activated). In
addition to exploring how the choice of these three parameters influences the effectiveness
of the policy, we also study the costs, both in terms of casualties and GDP loss, that
is associated with delaying the initial introduction of the policy. The second step of
our analysis studies how the economic costs associated with containment policies can be
alleviated by complementary public transfer schemes preventing bankruptcies of firms and
unemployment of workers. Whereas these first two steps provide general insights about

2The model has been implemented in Julia, the code is open source and can be obtained from https:
//github.com/ETACE/ace_covid19.

3Since the timing and details of the containment measures in Germany differed between states, we
implement a slightly simplified representation of the actual policy response in our model.

4Our analysis focuses entirely on economic costs of virus containment measures. Obviously there are
other important social costs associated with several of the considered measures, which, however, are hard
to quantify. In this paper we do not explicitly consider such effects.
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the design of effective policies and the trade-off between the overall number of infected
and the economic costs, the third step of the analysis returns to the German scenario
and explores the effect of different opening-up strategies conditional on the fact that a
relatively long lock-down stage has already been implemented.
Our main findings can be summarized as follows. Under the assumption that the effec-

tiveness of individual prevention measures remains unchanged during the lock-down and
the opening-up stages, any efficient policy should impose a low threshold of approximately
5 reported weekly newly infected per 100.000 people. In the opening-up stage all restric-
tions on economic activity should be lifted. With respect to the reduction of consumption
activities during the lock-down, no optimal value can be identified, but there emerges a
trade-off between the induced GDP loss and the resulting mortality. Although weaker re-
strictions during the lock-down stage imply a longer duration of the lock-down, they result
in lower economic costs, but also in higher mortality. The efficient policy design changes
if the effectiveness of the individual prevention measures decreases during the opening-up
stage. In such a scenario policies with strong lock-down measures should be followed by
only a weak relaxation of the restrictions during the opening-up phase. Regardless of the
chosen design of the containment measures, the introduction of complementary economic
support measures substantially reduces the induced GDP loss and thereby also leads to a
reduction of the public debt accumulated during the considered time interval of 18 months.
In case the lock-down period, like in many countries, has already been extended to several
weeks a second wave of infections is unlikely, if the effectiveness of individual prevention
measures remains unaltered. If the individual infection probability is, however, increasing,
the optimal policy is to set a very low threshold in order to immediately react to and avoid
an upcoming second wave.
The quickly growing economic literature investigating the COVID-19 pandemic on a

theoretical level mainly builds upon the standard SIR model and introduces a link to eco-
nomic activity. Measures taken to contain the pandemic thereby typically reduce produc-
tion potential or consumption and hence induce an economic shock. The interplay between
containment measures and economic costs is then studied as a pure optimization problem
from a social planners point of view (Alvarez et al., 2020; Miclo et al., 2020), or embedded
in a simple macroeconomic framework, where agents individually optimize their decisions
(Acemoglu et al., 2020; Eichenbaum et al., 2020; Krueger et al., 2020; Jones et al., 2020).
The empirical economic literature attempts to estimate the impact of COVID-19 based
on surveys (Coibion et al., 2020), analysing input-output-tables (Fadinger and Schymik,
2020; Pichler et al., 2020) or using detailed output data on a sectoral level (Dorn et al.,
2020).
Agent-based simulation models have been used to asses the effectiveness of containment

policies in purely epidemiological studies (Adam, 2020), for example for US and UK (Fer-
guson et al., 2020), for Finland (Tuomisto et al., 2020) or for Australia (Chang et al.,
2020). Even though the potential of agent-based models has been emphasized in epidemi-
ology after the outbreak of the swine flu pandemic in 2009 (Epstein, 2009) as well as in
economics after the financial crisis in 2008 (Foley and Farmer, 2009), to the best of our
knowledge we are the first to combine a macroeconomic framework with an epidemiological
structure in an agent-based model.5
The paper is organized as follows. In Section 2 we give a brief description of the structure

of the model focusing on the economic and pandemic frameworks and on their calibration.
5Additionally, online laboratories like TRACE (Hammond et al., 2020) or ASSOCC (Ghorbani et al.,

2020) aim to provide policy makers with tools to investigate containment measures in a fast and easy
manner.
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In Section 3 we provide the reproduction of German data with respect to key economic
and pandemic variables. General results of our analysis are discussed in Section 4, while
Section 5 analyzes different exit scenarios. We conclude in Section 6. In the Appendix we
provide a detailed model description and the parameter setting as well as statistical tests
underlying our analysis.

2 The Model
In this section we provide a short description of our model, which highlights the overall
structure of the economy as well as the crucial assumptions and mechanisms driving the
economic and pandemic dyanmics. A more detailed and technical presentation of the
model is given in Appendix A.

2.1 The Economy

The economy is populated by mt households and nt firms. The population of households
is divided in a fraction aYt of young households and a fraction 1 − aYt of old individuals.
Young households constitute the labor supply of the economy, whereas old households live
on a pension that is paid through a pay-as-you-go system.

Firms Firms are distributed across three private sectors representing a manufacturing
(M), service (S) and a food (F) sector, where in the food sector we subsume all essential
products for daily life. For each sector there is a mall representing the physical locus of
commercial transactions in that sector. In the mall, the nk,t firms active in sector k ∈
{M,S, F} keep an inventory that is replenished once per week and from which products are
sold to households on a daily basis. A firm i is characterized by a firm-specific productivity
level Ai and employs Li,t workers in period t to produce a weekly output Qi,t according to
the production function Qi,t = Ai Li,t. The production and input planning of the firm is
based on adaptive demand expectations and the managing of the inventory stock kept in
the mall to satisfy the volatile demand of households. The adjustment of the workforce, in
case of an output reduction, is fully flexible, whereas it is subject to matching frictions on
the labor market in case of an output expansion. The wage wi paid to workers is identical
for all firms active in the same sector and is proportional to the average productivity in
the sector.
Firms apply mark-up pricing with an endogenous mark-up µi,t > 0 on unit costs to

determine the price Pi,t of their products. Unit costs consists of the variable labor costs
and fixed costs cFi . The mark-up evolves adaptively over time within an interval [µ, µ̄]
and positively depend on the firm’s market share. Depending on its liquidity level, the
firm pays out either a fraction ζ or, if the liquidity exceeds a threshold, the full amount
of (positive) net profits as dividends. Dividends and the fixed costs paid by the firms
are equally distributed to households.6 A firm with negative liquidity has to declare
bankruptcy and exits the market. Since our analysis focuses on a short time period (18
months) characterized by economic crises, we abstain from incorporating a market entry
mechanism into our model.

6Since our model does neither have a financial market, where households could buy shares of the firms,
and also does not have an explicit capital goods sector through which firms’ expenditures for fixed costs
(e.g. capital costs) are channelled back to households, we ensure that the monetary flow in the model is
closed in this simplified way.
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Households While old households are retired, young households are active on the la-
bor market. Each household has appropriate skills to work in one of the sectors of the
economy. The proportion of the labor force with skills for sector k is denoted by ek. De-
pending on their age and employment status, households have different income sources.
Employed households earn a weekly labor income. Unemployed households, instead, re-
ceive unemployment benefits that correspond to a fraction of the last labor income. Old
households live on a pension that is uniform for all retirees in the economy. Additionally,
all households receive a capital income that corresponds to a proportional share of firms’
fixed costs and dividends distributed by the firms.
The decision of a household h on how much to spend for consumption is based on a

buffer-stock saving heuristic well established in the literature (see Deaton (1991)). This
rule prescribes to spend the average net income ĪNh,t as long as household’s current wealth
corresponds to a desired wealth-to-income ratio Φ. Otherwise the spending has to be
adjusted accordingly to let the current wealth level converge towards the desired one. The
consumption budget is allocated across the three sectors according to fixed consumption
quotas ck. However, since the food sector produces essential goods, households try to
avoid large spending cuts for food in case of income drops. In this situation, households
reduce the expenditures for food only by a small fraction φ per period, and allocate the
remaining budget proportionally among the non-essential sectors.

Labor Market Interactions The labor market of the economy is a decentralized mar-
ket in which, at the beginning of every week for each sector separately, firms open vacancies
in a random sequence and unemployed job seekers with appropriate skills apply. The firm
then hires on a first-come-first-serve basis. If at the time of the announcement of the job
opening there are no unemployed job seekers with appropriate skills, the firm is rationed
and can only hire again in the following week. If firms decide to reduce their labor force,
they randomly pick the workers to be laid off.

Goods Market Interactions On randomly picked different days of the week, a house-
hold visits one of the sector-specific malls for shopping. When visiting a mall, the house-
hold chooses the firm to buy from by collecting price information from a set of η randomly
selected active suppliers at the mall. The decision which of these η products to purchase
is based on a standard logit choice model that takes product prices Pi,t of the different
suppliers weighted with a sensitivity of choice parameter γC into account.
All households with the same shopping day and the same product choice queue in random

order for purchasing the selected good. If the available mall inventories of the firms selected
by the consumers are sufficient to serve all demand on that day, then all households
are fully served. If the stock of a firm at the mall becomes empty, then the firm is an
inactive supplier until the next production day. If all suppliers at a mall are inactive, then
consumers attending the mall are rationed.

Public Sector Besides the three private sectors, there is also a public sector operated
by the government. The public sector provides administrative services that are not sold
on the product market. The government employs a fraction eP of the labor force as civil
servants. Civil servants have a secure job and work in one of nP offices.
The government collects income and profit taxes to fund its civil servants, and to pay

unemployment benefits to young households without a job and pensions to old households.
Additionally, the government can pay subsidies or other financial support to households
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and firms as part of supplementary policies. The government adjusts the tax rate τt over
time in order to keep a target level of the public account.

2.2 Social Interactions

Social interactions between households take place at three different occasions. The first
one describes work-related contacts capturing that employed households meet workers
employed at the same firm. The maximum number of potential contacts nwk that a worker
can have every workday is sector specific. The second occasion are social contacts that
occur during shopping, which is supposed to capture that households meet other shoppers
visiting the same mall at the same day. For the service sector this also includes contacts
during the consumption of a service, e.g. at a restaurant, a fitness studio or similar. The
total number of shopping contacts nck of a households per day is sector-specific and the
actual number of contacts is between 0 and nck. Finally, there are other social contacts that
happen in other contexts than working and shopping. A distinction is thereby made in the
frequency of social interaction between age groups. There is an upper bound for the number
of intra-generational meetings between a young individual and other young households and
an old individual with old households (npy,y and npo,o), and for inter-generational contacts
between a young individual and old households and vice versa (npy,o and npo,y). For each
of the channels the actual number of meetings of an agent during a day is chosen from a
uniform distribution between 0 and the corresponding upper bound.

2.3 Pandemic Dynamics

The modeling of the pandemic dynamic follows a standard SIRD approach. In the presence
of a pandemic, households can be in one of four states with respect to their health status.
Households can be susceptible, i.e. they have not been exposed to the virus and are
therefore still not immune. Households can be infected, where one can distinguish three
different phases of the infection that is a latency, an infectious and a post-infectious period.
And finally households can either be recovered, which means they have been infected and
survived, or deceased meaning they have died from the infection. We assume a fixed
recovery time t̄rec as well as a fixed latency period tlnt and infectious period tinf .
Contagion and therefore the transmission of the virus takes place when susceptible house-

holds have contacts with infectious individuals during work, shopping and in other social
occasions. The contagion of a susceptible household through an infectious individual is
subject to uncertainty, which is captured by an infection probability pinf . The infection
probability is the same regardless of the type of social interaction.
An infected household recovers after t̄rec days and is then immune against a second

infection. However, there is a certain probability that an infected individual passes away
in the course of the infection. The individual fatality rate for an infected agent depends
on the age, but also on the capacity utilization of intensive care units of the health system.
The economy has a capacity nicu for patients who can be treated in intensive care units
and it is assumed that a fraction uicu of infected agents needs intensive care. In case
the intensive care units are underutilized, then the fatality rate qat of an agent with age
a ∈ {y, o} equals q̄al . If, however, the required number of intensive care beds exceeds the
available ones, then the fatality rates increase in the size of the shortfall such that the
actual fatality rate is a weighted average of q̄al and q̄ah, where q̄ah is the mortality rate if no
intensive care can be provided. Moreover, old individuals have generally a higher fatality
from the infection than young ones implying that q̄yl < q̄ol and q̄yh < q̄oh.
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Before the outbreak of the pandemic, all households are susceptible and the number of
susceptible individuals corresponds to the number of households m0. At a specific point
in time t0, a small number of randomly selected households gets infected. These first
patients pass the virus to other individuals through their social interactions at work, during
shopping or at other occasions thereby starting the infection dynamics. It is assumed that
after tvac days from the beginning of the pandemic, a vaccine is available on the market
and then, all susceptible households are assumed to receive immediate vaccination. Thus,
the probability of infection pinf becomes zero and the pandemic washes out as soon as
infected households recover or die.

2.4 Calibration and Initialization

Economic Calibration We initialize the model with m0 = 100.000 households and
n0 = 3780 firms (private and public). The number of households is chosen to balance the
trade-off between having a sufficiently large population size and technical limitations. The
total number of firms, instead, has been chosen to match the relation between the size of
the working population and the number of private firms in the German economy.7
Following German demographic data we set the fraction of young households aY0 = 75%

capturing that the number of individuals belonging to the age group between 18 and 65
years in the German population is about three times that of individuals with an age above
65 years.8
The productivity level of a firm i in sector k is a random variable following a uniform

distribution from an interval around a sector-specific average productivity Āk taken from
Statistisches Bundesamt (2020). Sectoral wages are proportional to the average productiv-
ity in the sector and their level is chosen such that the average price, taking into account
(average) firm mark-ups and fixed costs in each sector (given the firm’s markup) is equal
to one. Productivity and wages are measured in units of 1.000/52AC, such that a weakly
output of 1 unit corresponds to an annual GDP of 1.000AC. The parameters determining
the allocation of households consumption expenditures across the three private sectors,
cM = 21% cS = 50% cF = 29%, are based on German data and so is the employment
share of the public sector eP = 12%. The labor supply in the three private sectors manufac-
turing, service and food, i.e. the fraction of the labor force with the corresponding skills, is
given by the estimated employment shares eM = 11.70%, eS = 43.62% and eF = 32.68%.
These shares are calculated based on the allocation of consumption expenditures across
the three sectors and the average labor productivities . The initial number of workers in
sector k ism0 ·ek and the initial number of firms or, respectively, offices equals nk = ek n0.
The properties of the sectoral structure are summarized in Table 1.9
The economic parameters and the initial values of specific agent variables are calibrated

to generate a stationary GDP per capita and unemployment rate that reasonably match
the German economy before the pandemic. In particular, the model generates on average
across 20 batch runs an annual GDP per capita of 43.013AC and an unemployment rate of
3.98% (compared to an annual GDP per capita of 41.350 AC and an average unemployment

7The initial population state we use for all our simulations has been generated by running our model for a
burn-in phase of 2300 periods. Without the appearance of the virus and any change in the policy parameters
the model exhibits stationary dynamics of the economic key variables like GDP and unemployment starting
from this initial state.

8The German demographic data we obtain from here and firm data from here.
9Private sector employment shares for Germany are from here and the employment share of German pub-

lic sector from here. The data taken for sector-specific productivity is taken from the Volkswirtschaftliche
Gesamtrechnungen for Germany (Statistisches Bundesamt, 2020) and can be found here.

8

https://www.statista.com/statistics/454349/population-by-age-group-germany/
https://de.statista.com/statistik/daten/studie/246358/umfrage/anzahl-der-unternehmen-in-deutschland/
https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/arbeitnehmer-wirtschaftsbereiche.html
https://www.europeandatajournalism.eu/eng/News/Data-news/Public-employees-comparisons-between-European-countries-are-deceptive
https://www.destatis.de/DE/Themen/Wirtschaft/Volkswirtschaftliche-Gesamtrechnungen-Inlandsprodukt/Publikationen/Downloads-Inlandsprodukt/inlandsprodukt-vorlaeufig-pdf-2180140.pdf


Table 1: Sectoral distribution.

Manufacturing Service Food Public

Employment share 11.70% 43.62% 32.68% 12.00%
Av. productivity 97 62 48 62
Productivity range 87.3− 106.7 58.9− 65.1 43.2− 52.8 62
Av. wage 76.5 50.1 38.8 59.2
Consumption shares 21% 50% 29% –

Table 2: Upper bound of social interac-
tions: work and consumption.

Sector Work Shop

Manufacturing 8 10
Service 8 28
Food 8 10
Public 8 –

Table 3: Upper bound of social inter-
actions: social activity.

Young Old

Young meets 5 2
Old meets 4 2

rate of 3.2% in 2019, see here).

Social Interaction Calibration The total number of social interactions is the sum
of all social contacts at different occasions. We model three different contexts for social
interactions and use data reported in Mossong et al. (2008) to calibrate the average number
of private contacts for an agent each day as well as the contacts when she is going to work
or shopping in a certain sector. First, we assume that an employee meets on average 4 co-
workers during one working day (given a distribution with upper bound nwk = 8). Second,
a household interacts with other households that go shopping in the same mall at the same
day. Taking into account that a household in each sector shops only once a week, we use
ncM = 10, ncS = 28, and ncF = 10 where, in line with Mossong et al. (2008), the number
of potential meetings during consumption of services is considerably higher compared to
the other types of goods. And finally, the average number of social interactions per day
during leisure time across different age groups is again derived from the data reported in
Mossong et al. (2008). This gives the parameters npyy = 5, npoo = 2, npyo = 2, and npoy = 4.10

The calibrated data on social interactions is summarized in Table 2 and 3.

Pandemic Calibration Our model is calibrated to replicate the current pandemic of the
SARS-CoV-2 virus in Germany. Since the pandemic is still ongoing, there is a considerable
uncertainty around key parameters of the virus. Our choice of parameters is consistent
with the current data on COVID-19. The initial fraction of population infected is based on
reported number of infected in Germany on the 9th of March 2020. Since not all patients
infected with SARS-CoV-2 show symptoms, the estimated number of infected individuals
differs substantially from the detected number of cases. Bommer and Vollmer (2020) use
the infection and fatality rate from Verity et al. (2020) to estimate a detection rate in
Germany. We use their result that 15% of infected are reported to link the number of
infected in our model to data giving the reported number of infections. Taking this into
account and scaling the number of reported infected in Germany on March 9, 2020 to our
population size of 100.000 households yield an initial number of 8 young and 3 old infected

10Our parameter value npyo = 2 is higher than the value directly derived from the numbers given in
Mossong et al. (2008). This adjustment has been made in the process of calibrating our model dynamics
to the German data.
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Table 4: Data on COVID-19.

Name Value

Recovery period 21 days
Infectious period 5 days
Latency period 5 days
Detection rate 0.15
Reported infections in need of intensive care 8.5%
Intensive care units (ICU) 30 per 100.000

Infection probability when
susceptible meets infectious 7.25%

Table 5: Fatality rates

Name Value

Below ICU capacity
Young 0.099%
Old 2.4%
Without ICU treatment
Young 0.27%
Old 7.5%

households in our model.
The actual value of pinf , the probability to be infected when meeting a contagious

individual, is unknown in the literature. Instead, this value is calibrated such that in
a scenario without any virus containment measures the average reproduction number in
initial periods before herd immunity starts to play a role matches the value of R0 ≈ 2.7 and
hence lies well within the standard range of values reported for this number (see e.g. Read
et al. (2020)). Upon infection, households, after a latency period of five days (tlnt = 5),
are infectious for five days (tinf=5) (World Health Organisation, 2020).
In case a household gets infected, it takes t̄rec = 21 days to recover. During this time,

the household might pass away. The calibration of the individual case fatality rate for
the case of not fully utilized intensive care capacities relies on age-structured German
data of casualties and reported infected as of the beginning of June 2020, where the total
number of reported infected has been allocated to different age groups following Robert
Koch Institut (2020). In that case, the fatality rate for individuals below 65 years is
0.66% of reported infected. For individuals older than 65 years this rate is 16%. Taking
into account that only 15 percent of infected are reported, we obtain qyl = 0.099% and
qol = 2.4%. In case of a congestion of intensive care capacities, we use qyh = 0.27% for
young and qoh = 7.5% for old patients. To capture the effect of a collapsing health system,
we extrapolate Italian data collected during periods of over-utilization of local intensive
care capacities, see here).
Following Anesi (2020), an infected household needs intensive care in 8.5% of the re-

ported cases. The assumed number of intensive care beds is 30 per 100.000 households,
which is based on German data (Rhodes et al., 2012). Finally, we assume that a vaccine
will be available one year after the initial spread of the virus. The pandemic related data
for our calibration is summarized in Tables 4 and 5.

2.5 Containment Measures and Economic Policy Instruments

In our policy experiments we analyze the pandemic and economic implications of differ-
ent policy measures aimed at containing the outbreak of the COVID-19 pandemic. We
thereby explicitly distinguish between four sets of measures as part of a containment
strategy implemented to control the pandemic spread of the infection, and economic pol-
icy instruments to mitigate the severe economic consequences of the pandemic and of some
of the implemented countermeasures.

Containment Measures The first set of measures targets the individual behavior of
households, aiming at a direct reduction of the infection probability pinf during face-to-
face contacts of individuals. These measures include keeping a minimum physical distance,
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improved measures of sanitation, and wearing masks or other facial coverings. We refer
to these measures as individual prevention measures and assume that they reduce the
infection probability to (1− ξ) pinf with ξ ∈ (0, 1).
The second bundle of measures aims at a reduction of social interactions in the private

context. This social distancing can either be achieved through contact restrictions imposed
by the government or through a consensual change in the behavior of households. Studies
show that there has been a substantial reduction in the number of social contacts in
Germany after the outbreak of COVID-19 (see Lehrer et al., 2020). In our model, social
distancing is captured by a reduction of the average number of daily intra- and inter-
generational social contacts, which can be achieved by reducing the upper bounds npyy,
npoo, npyo and npoy of the stochastically determined number of contacts.
The third component of the containment strategy prescribes social distancing also in

the professional context. This includes the reduction of direct contacts between workers
at the workplace, for example, by changing work flows, processes, and by conducting
meetings online. The main instrument in this respect is the introduction, respectively
extension, of home-office.11 To account for sectoral differences, we assume that in each
sector only a certain proportion of workers hhok works from home during the pandemic.
We use fractions of (potential) jobs, suited for working from home, in different sectors
reported by Fadinger and Schymik (2020). In particular, we use hhoM = 45%, hhoS = 30%,
hhoF = 0% and hhoP = 75%. Furthermore, we also take into account that due to these
measures the number of contacts at work goes down also for those not in home-office.
Hence, the introduction of home-office is associated with a (sector-specific) reduction of
the value of nw. Furthermore we assume that the productivity of workers is not affected
if they are in home-office.
Whereas the measures discussed so far in the context of our model have no direct impact

on economic activities the main focus of our analysis is on the implementation of measures
where the reduction of contacts is directly related to the reduction of economic activity. To
capture such measures, we consider restrictions, forced closures and regulations imposed on
stores, restaurants and other business outlets. These restrictions of consumption activities
are incorporated in our model by introducing sector-specific shopping probabilities psk
such that a household goes shopping to the mall of sector k in a given week only with that
probability. In case the household does not go shopping the foreseen weekly consumption
budget for that sector is added to the household’s savings. Furthermore, there are specific
requirements, such as access restrictions, that shop owners have to comply with to keep
their shops open. These measures aim at a reduction of the average number of households
that an individual can meet during shopping. In our model, this is reflected by reducing
the number of contacts during shopping nck.
In order to take into account broad empirical evidence that the adjustment of behavior

upon the implementation of policy measures is sluggish, we assume that, when a policy
affects the social contact parameters, the infection probability or the consumption activity
parameter, then there is a phase-in period after the policy introduction, respectively a
phase-out period after the elimination of the policy, during which the parameter values of
the agents adjust from their original value to the new target.

Economic Support Policies The reduction in economic activity induced by the con-
tainment measures discussed above might lead to a substantial increase in unemployment
as well as the depletion of firms’ savings and potentially their bankruptcy. In order to

11In fact, recent data show that working from home has massively increased in German companies after
the outbreak of COVID-19 (see Möhring et al., 2020).
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avoid such phenomena and resulting vicious cycles for demand and output, the govern-
ment might combine the containment measures with economic support policies. We con-
sider such policies which particularly aim at avoiding bankruptcies and strong increases in
unemployment in the direct aftermath of the introduction of the containment measures.
More precisely, in our analysis we consider the option to implement a combination of a
short-term work scheme and a firm bailout policy. Under the short-time work scheme
firms have the possibility to put workers not needed under the current production plan in
short-time work. The worker, then, receives a fraction ϕ = 0.7 of the regular wage and
the firm receives this amount as a transfer from the public account. Once the firm starts
expanding again, it first calls back employees from its short-time list before hiring new
workers. A worker can be in the short-time work scheme for at most six months in a row.
Furthermore, the bailout policy implies that for any firm with negative savings in a given
period, the savings account is balanced by a transfer from the public account, thereby
avoiding that the firm goes bankrupt.
Both policy measures are associated with a considerable increase in the governmental

spending and, due to the mechanics of the tax rule, normally would trigger an upward ad-
justment of the tax rate. In order to avoid a pro-cyclical effect of taxation, the adjustment
of the tax rate can be suspended as a third economic policy measure.

3 Reproduction of Dynamics in Germany
Before systematically analyzing all the economic and epidemiological effects of different
policy measures, we first demonstrate that our calibrated model is able to reproduce
German data with respect to the evolution of key economic and pandemic variables for
the time window of 63 days between March 9, 2020 and May 10, 2020. A whole set of
measures has been introduced in Germany shortly after the start of this time window.
In particular, these measures include individual prevention measures, the introduction
of home office in the majority of companies, a regulation forbidding meetings between
more than two people in public spaces (with the exception of families), the closure of a
large fraction of stores (apart from super-markets, and stores for food and other essential
products) as well as all hotels and restaurants. In the framework of our model we put
all these measures together to a single lock-down policy. As discussed above, there is a
phase-in period after the implementation of the policy during which the model parameters
adjust to their new value. The policy implements home-office for all workers where it is
possible and, based on the different fractions of worker in home-office across sectors, the
number of contacts at work of those not in home-office decreases to nw,l = (4, 5, 8, 2),
where the first three entries refer to the three private sectors and the last entry to the
public sector. Furthermore, the average number of daily private contacts is reduced by
approximately 50% to np,lyy = 2, np,loo = 0.5, np,loy = 1, np,lyo = 0.5.12 These numbers for
the reduction of contacts is based on surveys about the change in private contacts after
the introduction of measures, (see Lehrer et al., 2020), and also take into account that
particular care was taken in order to reduce the number of contacts of people older than
65 years of age. Furthermore, the shopping frequency in the three sectors is reduced from
the default of ps = (1, 1, 1) for all consumers before the crisis to ps,l = (0.85, 0.5, 1). These
numbers are based on reports about the reduction of demand in different sectors after
the introduction of the containment measures.13 Furthermore, the number of contacts

12The superscript ‘l’ always refers to the parameters in the lock-down stage.
13Data on the reduction in revenue in manufacturing in Germany is available here. Given the wide set of

sectors included in Service obtaining concrete numbers of revenue reduction is difficult and our estimation
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Table 6: Default values for lock-down policy.

lock-down

Social distancing ξ = 0.6

Home office Yes

Work contacts nw,l = (4, 5, 8, 2)

Private contacts np,lyy = 2, np,loo = 0.5, np,loy = 1, np,lyo = 0.5

Shopping contacts ns,l = (5, 20, 10)

Shopping frequency ps,l = (0.85, 0.5, 1)

Short time Yes

Bailout Yes

during consumption activities in the manufacturing and service sector are reduced to
nc,l = (5, 20, 10). This captures an increase in online shopping and the fact that, due to
the reduced shopping activity of others, agents, in any case, have fewer contacts when
shopping. Furthermore, consistent with the German case and in addition to these virus
containment measures, the start of the lock-down policy also implies that the government
activates the bailout policy and the short-time program, as described in Section 2.5. An
important role for the infection dynamics plays the parameter ξ describing by how much
the individual prevention measures of the policy reduces the infection probability at each
meeting between a susceptible and an infectious agent. Since there is no data available to
directly estimate this parameter, we calibrate it. In particular, we choose the parameter
in a way such that the average number of infected at the end of the considered time
window matches the empirical data as good as possible. Based on this, we set ξ = 0.6 and
throughout our analysis, if not stated differently, we assume that individual prevention
measures lead to the reduction of the infection probability pinf by this factor. As part of
our analysis, in the next section we will also consider scenarios where we assume that, due
to less disciplined implementation of the individual prevention rules, their effect decreases
during the opening-up stage. To capture such a scenario, we will use a smaller value of
ξ during the opening-up stage. Table 6 summarizes the default parameter setting for the
lock-down stage underlying the simulations in this section.
In Figure 1 we show the dynamics generated by the model if this policy resembling the

German measures is introduced two weeks after the appearance of the virus (corresponding
to March 23, 2020). The simulation data is based on a batch of 20 runs with identical
initial conditions and the blue lines in all panels show the mean across the runs whereas
the standard deviation is given by the dotted black lines. In Panel (a) the simulated
dynamics of the reported number of infected is compared to data from Germany for the
considered time window.14 More precisely, the green line shows the number of reported
cases in Germany scaled to a population of 100.000 inhabitants. This Panel displays
that the empirical data is well within the confidence interval (mean plus/minus standard
deviation) of the simulations and that the simulated data reproduces both the shape of
the diffusion curve and the slope at the end of the considered interval. In Panel (b) the
evolution of a weekly average of the estimated reproduction factor R0 is shown. Both for
the simulation and the real data this factor calculated every day as the ratio of the reported

of a reduction of 50% is based on reported numbers in different service areas.
14This data is taken from the database of the Johns Hopkins University at https://github.com/

CSSEGISandData/COVID-19
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(a) (b)

(c) (d)

Figure 1: Comparison of empirical data (green line) and simulation results (blue line) for the
dynamics of the reported number of infected (a), the smoothed R0 value (b) and casualties as a
percentage of the population (c). Panel (d) shows the simulation data for the percentage of workers
in the short-time program.

newly infected during the last four days and the newly infected during the four days before
that.15 Since the daily R0 estimates are very volatile we show the dynamics of the mean
of the estimated R0 value during the last seven days. Also with respect to this indicator
we can see that the simulation matches the data very well. Similarly, the dynamics of the
casualties predicted by the model is a good match of the empirical data, as demonstrated
in Panel (c). Panel (d) shows the dynamics of the number of workers whom their employer
has put into the short-time program. Only simulation data is shown here since no time
series for the empirical data is available. In order to connect this time series to empirical
data we observe that, according to an announcement of the German Federal Employment
Agency (see Bundesagentur für Arbeit, 2020), 10.1 million workers were reported to be
in short-time work at the end of April 2020. In light of a workforce of approximately
45 million this corresponds to 22.5%, which is very close to the mean of the simulation
data, which gives a fraction of workers in short-time of 22.3% at day 49, corresponding
to the end of April 2020. Overall, this discussion shows that the calibrated model does
not only seem to capture the effect of different policy measures on the spreading of the
virus in the population, but also its economic impact. Based on the shown ability of the
model to reproduce empirical dynamics, we now employ the model to explore economic and
pandemic dynamics that would emerge under alternative policy responses to the outbreak

15This way of estimating R0 is following the approach used by the Robert Koch Institute. In Appendix
A.3 a detail description of the computation is available based on Robert Koch Institut (2020).
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(a) (b)

(c) (d)

Figure 2: Dynamics of currently infected individuals (a) and total casualties (b) as well as GDP (c)
and unemployment rate (d) for the scenarios with no policy measures (blue), only social distancing
(red) and social distancing in combination with home office (green).

of the virus.

4 Policy Analysis

4.1 Policies without direct economic impact

As a first step of our policy analysis we examine which options a policy maker has to
reduce the spreading of the virus without directly interfering with economic activities in
the sense of closing stores or reducing the possibility to consume services. More precisely,
we consider three policy scenarios. First, a scenario where no containment measures are
taken at all. Second, the introduction of only individual prevention measures, and third
the combination of these individual prevention measures with home office.
Figure 2 shows the dynamics of the percentages of the population of currently infected

and of casualties. The black dotted line in Panel (a) indicates the upper bound on the
number of infected under which the intensive care capacities are still not fully used. The
curve of infected individuals in the absence of any measures follows a steep hump-shaped
pattern well known from standard SIRD models. Due to herd immunity the virus is elim-
inated after approximately 120 days but the associated mortality is about 1.6%. Already
the introduction of the individual prevention measures strongly reduces the speed of the
diffusion of the virus and the maximal number of infected. Complementing individual
prevention measures with home-office reinforces these effects and average mortality can
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be reduced by a factor of approximately 10 compared to the scenario without any con-
tainment. Nevertheless, the simulations indicate that these measures are not sufficient to
ensure that the number of infected stay below the intensive care capacity. Considering the
GDP and unemployment dynamics shown in panels (c) and (d), it is confirmed that these
measures are not associated with any direct economic costs. A crucial assumption in this
respect is that, as discussed earlier, in our setting productivity of workers is not reduced
when they move to home-office. The slight decrease in GDP and increase in unemployment
around period 100 in this scenario without containment measures is due to the reduction
in demand induced by the large mortality.

4.2 Policies with direct economic impact

We now consider containment policies which, apart from introducing individual prevention
measures and home office, also directly induce a reduction of economic activity. To keep
the analysis as simple and transparent as possible, we consider only two-stage policies
with an initial ‘lock-down’ stage followed by an ‘opening-up’ stage. Individual prevention
measures and home office are active in both stages. The amount of restrictions of the
economic activity differ between the two stages. Similar to the approach taken in Section
3 we express such restrictions by assuming that the shopping probabilities psk, k ∈ {M,S}
of households for the sectors manufacturing and service are reduced. The parameters
αl and αo determine the amount of reduction of the shopping probabilities during the
lock-down and the opening-up phase, where αl = 1 yields values of ps identical to those
used for the representation of the German policy in Section 3. During the lock-down
also the number of contacts in case a household goes shopping and also the number of
private contacts are reduced to the values already used in Section 3. These restrictions
on contacts are lifted in the opening-up stage. The values of the parameters under the
two policy stages are summarized in Table 7. As a default, the policy starts two weeks
after the first appearance of the infected agents with the lock-down stage. The transition
from the lock-down to the opening-up stage happens when the reported number of newly
infected agents during one week is below a threshold αlo. If later in the simulation the
number of reported newly infected increases above αlo, then the restrictions of the lock-
down stage are again activated. Once vaccination is available tvac days after the outbreak
of the virus, the infection probability pinf becomes zero and all restrictions are lifted. Our
policy analysis is carried out under the assumption that a vaccine is available one year
after the occurrence of the pandemic, i.e. we set tvac = 379. The total time horizon
of our analysis is 18 months, since economic implications of the measures taken extend
substantially beyond the time interval in which they are applied. In the first part of
this section we assume that no complementary economic support measures for firms and
workers are introduced in combination with the containment policies.16 This allows us to
obtain insights about the isolated economic implications of the containment policies. In
the second part of this section we will then examine in how far our insights about the
efficient design of containment policies change if they are complemented with economic
support policies.
The policy analysis is structured in a way that we start from a default policy scenario

and then systematically investigate the implications of variations of the three policy pa-
rameters. We set αl = 1, αo = 0 and αlo = 5 as the default policy. The reduction in

16It should be noted that in this respect the default setup we use in the policy analysis differs from the
scenario used in the previous Section 3 for the model calibration, since there, based on actual German
policy choices, we have activated economic support measures together with the containment policies.
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Table 7: Parameter values in the lock-down and opening-up stages of the policy.

lock-down opening-up

Social distancing ξ = 0.6

Home office Yes

Private contacts np,lyy = 2, np,loo = 0.5, np,loy = 1, np,lyo = 0.5 np,oyy = 5, np,ooo = 2, np,ooy = 4, np,lyo = 2

Shopping contacts ns,l = (5, 20, 10) ns,o = (8, 28, 10)

Shopping frequency ps = (1, 1, 1)− αl(0.15, 0.5, 0) ps = (1, 1, 1)− αo(0.15, 0.5, 0)

Table 8: Range of the key policy parameters
(default values or bold face).

Parameter Values

αl 0.25, 0.5, 0.75, 1, 1.25

αo 0, 0.25, 0.5, 0.75

αlo 5, 10, 30, 50

manufacturing and service consumption during the lock-down stage of the default pol-
icy corresponds to the level of restrictions under our German calibration, the opening-up
results in the elimination of any restrictions of economic activity and the condition for
activating the opening-up stage, and to keep it activated, is that during the last week
there were less than 5 reported newly infected per 100.000 individuals. The choice of this
threshold is such that, under the use of the default values for αl and αo, it induces a
lock-down of about 9 weeks. We choose this value because it is consistent with data in
several affected countries and, as we will show below, larger values of the threshold seem
to be inefficient.
In Table 8 we list the different values for the three policy parameters we consider in

our analysis. To keep the exposition clean we will not discuss all possible combinations
of these parameter variations, but mainly focus our attention on the variations of one
parameter at a time and additionally cover a few experiments where several parameter
values deviate from the default. In light of our results we believe that this is sufficient to
generate a clear picture of the effects induced, on the one hand, by making the lock-down,
respectively the opening-up stage, more or less restrictive, and, on the other hand, by
different levels of the transition threshold αlo. Our analysis is again based on 20 batch-
runs for each parameter setting, and for each parameter constellation we consider not only
the dynamics of different key variables but also aggregate indicators for the economic and
epidemiological effects of the considered policy. As an indicator for the economic costs we
consider the average GDP-loss in the 18 months after the outbreak of the virus. The loss is
expressed as a percentage of the GDP level prior to the outbreak of the virus. The impact
of the policy with respect to the effect of the virus is measured by the total mortality
during the outbreak, i.e. the total number of casualties caused by the virus until the end
of the run as a percentage of the population.
Figure 3 shows the average GDP loss and virus mortality for different policy variations.

Each point depicts the mean of the values of the two indicators across the 20 batch runs.
In Appendix B we provide statistical tests for the significance of the difference of each
indicator for the four labeled parameter combinations in the figure. The default policy
scenario is labeled with ‘A’. The red solid line indicates the effects of a variation of the
severity of restrictions in the lock-down stage with point ‘B’ denoting the scenario with the
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Figure 3: Effects of variations of the key policy parameters.

weakest restrictions (αl = 0.25) and point ‘E’ to those with the strongest one (αl = 1.25).
Similarly, the blue line indicates the effects of more restrictions during the opening-up
stage with point ‘C’ labeling the scenario where even after the opening-up restrictions are
almost as severe as under the lock-down (αo = 0.75). Finally, the black line corresponds
to a variation of the threshold determining when to switch from the lock-down to the
opening-up stage and vice versa. Point ‘D’ corresponds to a threshold of αlo = 50. The
dotted red and black lines correspond to the solid lines of the same color, however they
were calculated for αlo = 50 (red dotted line) respectively αl = 0.5 (black dotted line).
The figure shows that both indicators exhibit substantial variation across the set of

considered policies. The mortality rate varies between approximately 0.01% and 0.05%,
whereas the average GDP loss is between 0.5% and 9%. Several important conclusions
can be drawn from this figure. First, an increase of the switching threshold above the
default value of αlo = 5 leads to a worsening of both considered indicators and therefore is
clearly inefficient. Second, policies inducing restrictions of the consumption activities also
during the opening-up stage, i.e. αo > 0, either have insignificant effects (αo = 0.25, 0.5)
or lead to larger GDP losses without reducing mortality in a significant way (αo = 0.75,
see Appendix B). Third, there is an efficiency frontier, the red line between the points
B and A, exhibiting a trade-off between reducing economic losses and inducing a higher
mortality.17 The crucial factor determining the position on this frontier is the amount of
reduction of consumption activities during the lock-down stage. Making the lock-down
even stronger, i.e. moving from point A to point E leads to a significant increase in the
GDP loss, whereas the induced reduction in mortality is insignificant (see Appendix B).
To get a better understanding of the mechanisms underlying these results, we show

in Figure 4 the dynamics of key variables under the policies corresponding to points A,
B, C and D from Figure 3. Panel (a) shows that weaker restrictions under the lock-
down (αl = 0.25) lead both to a larger maximal number of infected individuals and a

17Our notion of an efficiency frontier here refers only to the interplay of our two indicators GDP-loss
and mortality and is not connected to notions like Pareto-efficiency in the model.
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Table 9: Comparison of policy results.

A B C D
(default) (αl = 0.25) (αo = 0.75) (αlo = 50)

GDP loss [%] 6.55 (0.94) 0.43 (0.11) 8.0 (0.18) 6.56 (0.32)

Mortality [%] 0.012 (0.0043) 0.022 (0.0085) 0.01 (0.0036) 0.036 (0.011)

Duration Lock-down 86.87 (76.49) 120.75 (21.41) 57.4 (10.05) 16.45 (4.11)

Switch Opening/Lock-down 0.8 (1.11) 1.3 (1.38) 0.05 (0.22) 0.03 (0.47)

Pub. Acc. Deficit [%] 2.60 (1.0) 0.67 (0.01) 3.4 (0.33) 0.7 (0.17)

substantially higher persistency of the virus in the population compared to the default
policy. On the other hand, the GDP loss under this policy builds up more slowly than
under the default policy. Although under this policy the lock-down phase lasts by far
the longest (see Table 9), GDP returns to values close to the pre-policy level after about
200 days, such that the duration of GDP loss is less than half of that for the three other
policies (Panel (b)). On the other hand this policy induces the risk of repeated returns to
the lock-down phase, which is much less likely under the other three policies (see Table
9). With respect to a policy with a more cautious opening-up stage (αo = 0.75), Figure
4 confirms that the implications for the infection dynamics are almost identical to that
of the default policy. However, Panel (b) shows that, under such a restrictive opening-up
stage, the economy temporarily converges to a stationary GDP level which is clearly below
the pre-crisis level and only returns to the original level after all constraints are lifted given
vaccination availability. Finally, under a high threshold for opening up (αlo = 50), the
lock-down phase is finished very early (see Table 9) and the number of infected decreases
only slowly afterwards, see Figure 4(a). With respect to GDP loss, the earlier lifting of
the lock-down does not imply an improvement compared to the default policy. Figure
4(b) indicates that a longer lock-down actually induces higher output after the recovery
from the crisis. The reason for this observation is that the lock down and the associated
reduction in demand induces bankruptcies primarily of the less productive firms and, due
to the intensified competition, an increase in market shares of the most productive ones.
This reallocation of market shares remains effective also after the full recovery of the
economy lifting the post crisis GDP slightly above the pre-crisis level. No such effect
occurs under a weak (policy B) or a short (policy D) lock-down. Furthermore there is a
substantial difference between the policies with respect to the deficit they generate in the
public account. The last row in Table 9 shows the increase in the public deficit after 18
months as a percentage of the pre-crisis annual GDP. The default policy (A) generates a
substantially higher deficit compared to both a longer, weaker lock-down (B) and a policy
with a higher lock-down threshold (D). Having only a weak opening-up (C) generates a
large public deficit, quite consistent with the observation that it generates a large GDP
loss. Overall, also the consideration of the public deficit does not alter our main conclusion
that a weak opening up or a large threshold for triggering the opening-up are not in the
set of efficient policies.
The main messages of the first part of our policy analysis are twofold. First, an efficient

policy should have a low switching threshold combined with a full relaxation of restrictions
of consumption activity in the opening-up stage. Second, the amount of reduction of
economic activity during the lock-down induced by the policy gives rise to a trade-off
between economic costs (GDP loss and public deficit) and the mortality of the virus, i.e.
a movement along the frontier between B and A in Figure 3.
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(a) (b)

Figure 4: Dynamics of currenlty infected individuals (a) and GDP (b) for the default policy (blue),
αl = 0.25 (green), αo = 0.75 (red) and αlo = 50 (purple).

Effects of an increase in the infection probability in the opening-up stage Our
analysis so far has assumed that the opening-up increases economic activity and the num-
ber of contacts of the agents, but that the effect of the individual prevention measures
remain unchanged, i.e. the factor, by which the infection probability at each meeting is
reduced due to the measures taken, is ξ = 0.6 both during the lock-down and the opening
-up stage. Arguably, the fact that different measures are relaxed once the opening-up
stage starts might induce that part of the population reduces also the care with which
the individual prevention measures are followed, thereby reducing their effect. To check
in how far our insights about the efficient policy design obtained above are robust with
respect to such unintended effects of the opening-up, we repeat here our analysis from
above and vary the key policy parameters in the ranges given in Table 8, but assume that
the social distancing parameter ξ during the opening-up stage is only ξo = 0.5, whereas it
remains at the default value ξl = 0.6 during the lock-down.
Figure 5 shows that this relatively small increase in the virus transmission probability

at a meeting between a susceptible and an infected during the opening-up stage changes
several aspects of the effects of the different policy parameters. Comparing this figure to
the corresponding Figure 3 for our standard scenario shows that the mortality and the
GPD loss are higher relative to the previously considered setting. The insights about the
inefficiency of a large threshold αlo and also about the trade-off associated with inducing
less restrictions during the lock-down (i.e. choosing a lower αl) still apply in this setting.
However, increasing the threshold to αlo now has a much stronger mortality-increasing
effect.18 A qualitative difference arises with respect to the choice of the parameter αo
determining the restrictions during the opening-up stage. Differently from the standard
case, a more cautious opening-up seems more efficient in a scenario where the social dis-
tancing effects decline during the opening-up. More precisely, choosing αo = 0.75 seems
to reduce mortality, although the effect, like in the default scenario, is not statistically
significant, but contrary to the default scenario does so without inducing any additional
GDP loss compared to full opening. Combinations of such a restrictive opening-up stage
with different lock-down intensities now gives rise to a new efficiency frontier (the red
dotted line in Figure 5). Efficient policy choices now either combine a weak lock-down
with a full opening-up or a restrictive lock-down with a very cautious opening-up stage.

18The policy ‘D’ with αlo = 50 generates such high average mortality of approximately 0.09 that it is
outside the range depicted in Figure 5.
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Figure 5: Effects of variations of the key policy parameters with ξo = 0.5.

The dynamics of infections and GDP loss for different policies under this scenario is
depicted in Figure 6. Panel (a) of the figure clearly shows that in case of a loosening up of
individual prevention measures during the opening-up stage an almost constant positive
stock of infected emerges under all policies except the weak opening-up policy C. Under a
large threshold αlo = 50 the stock of infected is substantially larger compared to the three
other policies. Considering the dynamics of the GDP loss in Figure 6(b) and the numbers
reported in Table 10 shows that, with the exception of the weak opening policy, there
are numerous switches back to the lock-down stage and, under the default policy (A) and
the weak lock-down policy (B), the economy is under lock-down for a very extensive time
period. Under the more cautious opening-up policy (C) the total duration of the lock-down
is much smaller and, in spite of this, mortality is lower than under the default policy. As
can be seen in Figure 6(b), due to the long periods under lock-down, the GDP loss under
the default policy is very close to that under policy C with the more cautious opening.
Hence, in this scenario the cautious opening-up policy is indeed more efficient than the
default. The implications of a large threshold αlo are even more detrimental in this scenario
with less reduction of the individual infection probabilities during the opening-up stage
than in the benchmark considered above. The reason is that the constant large stock of
infected generates a high mortality, while even the large threshold cannot avoid additional
lock-downs such that the GDP dynamics (see Figure 6 (b)) and the total GDP loss is close
to that for policies with smaller thresholds.

The costs of a late policy response Apart from deciding about the exact nature of the
measures to fight the dissemination of the virus, a policy maker also has to decide when to
introduce such measures. Throughout our analysis so far we have assumed that any policy
is introduced two weeks after the first infected appear in our population.19 Considering

19Since in our model we start the spreading of the virus by infecting a whole set of agents, namely
0.01 percent of the population, this point in time should not be mixed up with the infection of the first
individual in the entire population.
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Figure 6: Dynamics of currently infected individuals (a) and GDP (b) for the default policy (blue),
αl = 0.25 (green), αo = 0.75 (red) and αlo = 50 (purple) in a scenario with ξl = 0.6, ξo = 0.5.

Table 10: Comparison of policy results with ξl = 0.6, ξo = 0.5.

A B C D
(default) (αl = 0.25) (αo = 0.75) (αlo = 50)

GDP loss [%] 8.42 (0.40) 0.99 (0.16) 8.33 (0.50) 7.93 (0.57)

Mortality [%] 0.015 (0.0055) 0.026 (0.0076) 0.012 (0.0039) 0.089 (0.0086)

Duration Lock-down 158.55 (76.45) 320.6 (117.83) 93.1 (70.74) 109.9 (81.48)

Switch Opening/Lock-down 7.55(1.76) 6.9 (1.83) 1.75 (1.62) 8.7 (0.86)

Pub. Acc. Deficit [%] 4.54 (0.51) 0.96 (0.12) 3.72 (0.52) 2.40 (0.52)

the policy responses of different countries to the outbreak of the COVID-19 pandemic,
however, substantial heterogeneity in the timing of the introduction of different measures
could be observed. Intuitively, concerns about the potential damage for the economy might
be invoked in order to argue in favor of delaying strong lock-down measures. To address
this issue we list in Table 11 average mortality and GDP loss under the default policy
(and our standard assumption that ξl = ξo = 0.6) if the lock-down is introduced between
1 and 4 weeks after the first occurrence of infected agents.
The results clearly indicate that delaying the policy response is quite costly in terms of

the resulting mortality of the pandemic, with an increase of mortality by a factor of about
20 if the response starts 4 weeks rather than 1 week after the appearance of the virus. The
difference in economic costs is however neglibible, although a later start of the policy leads

Table 11: Effects of different policy starting dates

1 week 2 weeks 3 weeks 4 weeks

GDP loss [%] 6.43 (0.76) 6.55 (0.94) 6.09 (0.35) 6.29 (0.27)

Mortality [%] 0.007 (0.0026) 0.012 (0.0043) 0.030 (0.0077) 0.138 (0.0406)

Duration Lock-down 72.45 (12.9) 86.45 (76.49) 94.5 (5.79) 99.4 (4.87)

Switch Opening/Lock-down 0.9 (1.29) 0.8 (1.11) 0.1 (0.49) 0.1 (0.31)

Pub. Acc. Deficit [%] 2.07 (0.73) 2.59 (1.03) 2.97 (0.28) 3.33 (0.23)
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Table 12: Effects of different duration of the bailout and short-time work policy

no policy 6 months 12 months 18 months

GDP loss [%] 6.55 (0.94) 3.08 (1.04) 3.16 (0.64) 2.95 (0.54)

Pub. Acc. Deficit [%] 2.59 (1.03) 1.70 (0.62) 1.70 (0.30) 1.88 (0.25)

to a longer duration of the lock-down (see Table 11).20 This result is consistent with the
observation that the crucial driver of the cost is the large increase of unemployment and
the bankruptcy wave which emerges directly after the start of the lock-down. Economic
costs are generated to a large extent by the slow recovery after this initial shock, such
that the actual duration of the lock-down is of minor importance. The generated public
account deficit however reacts to the differences in the duration in the lock-down and is
substantially larger if the policy response starts only after 4 weeks compared to the case
where measures are introduced after 1 week.

Public policies supporting firms and workers Part of the economic cost induced
by the virus containment policies stem from a reduction in demand triggered by the large
increase in unemployment and as well as by a sizable bankruptcy wave. In our standard
setting we assume that there are no public policies in place to support firms during the
crisis and that firms hire and fire workers immediately according to their current labor
demand. Under these assumptions our default policy induces an unemployment peak at
more than 35% and approximately 35% of all firms (the majority of these firms are in the
service sector) go bankrupt during the 18 months after the virus outbreak, where most
of the bankruptcies happen shortly after the start of the lock-down. In this subsection
we examine in how far policy measures providing public transfers in order to prevent
bankruptcies and mass unemployment are able to reduce the GDP losses associated with
containment policies. More precisely, we consider a combination of a bailout and a short-
time work policy, as explained in detail in Section 2.5.
Table 12 compares the GDP loss and the public account deficit for different values for

the duration of this policy. In all cases the policy is started together with the default
containment policy two weeks after the initial emergence of the virus. A clear message of
this table is that the bailout and short-time work policy strongly reduces the GDP loss
to about one third of the value observed without such economic support policy, while at
the same time generating a reduction in the generated public deficit. This effect can be
produced by a policy which is active only for the first six months after the introduction of
the containment measure. Comparing the dynamics of the GDP with and without such
policy (not depicted here) shows that the main positive effect of the policy is the reduction
of the sharp demand loss directly after the introduction of the containment policy. This
implies that the recovery, once the lock-down is lifted, starts from a larger GDP level and
the return to the pre-crisis level of economic activity is achieved substantially earlier than
in the absence of the policy. Furthermore, economic support policies also increase the
speed of GDP growth during the recovery phase after the lock-down measures have been
lifted. Bankruptcies during the 18 months period are reduced to less than one third of the
the value without economic support policies and also the number of workers in short-time
peak at less than 25% which is significantly lower than the unemployment rate peak in
the absence of support measures. The lower expenditures for unemployment benefits and

20In addition to the GDP loss reported here we have also checked that number of bankruptcies does not
vary significantly between the scenarios with different delays in the policy response.
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Figure 7: Effects of variations of the key policy parameters if containment policies are comple-
mented with economic support policies.

higher tax revenues induced by the policy outweigh its direct costs also with respect to
public spending, such that the deficit generated after 18 months is actually lower than
under the default policy. We abstain from analyzing any additional publicly financed
economic stimulus measures here, since this is not the main focus of the paper and also
the effects of such policies in general will exceed the direct recovery phase of 18 months
we are considering here.
Having shown the merit of complementing containment policies with economic support

policies we conclude our general policy analysis by showing that our qualitative insights
about the efficient design of containment policies also stay intact if these policies are
implemented together with the economic support measures we have just discussed. Figure
7 shows the effect of a variation of the key parameters αl, αo and αlo in a scenario where
bailout and short-time work policies are in place and otherwise the default parameters
hold, in particular ξl = ξo = 0.6. This figure corresponds exactly to Figure 3 with the only
difference of the economic support measures. Comparing the two figures shows that the
strong reduction in GDP loss due to the economic support policies is realized regardless of
the chosen containment policy. Also, the way the two key indicators mortality and GDP
loss are affected by changes in each of the three containment policy parameters does not
change significantly due to the introduction of economic support measures. The efficiency
frontier is still generated by the variation in the severity of the lock-down (αl). Having a
low threshold for ending the lock-down and a full opening-up afterwards is also efficient
in this setting. Actually, the economic costs generated by policies with weaker opening
are amplified in the presence of economic support policies. The robustness of our insights
about the design of effective containment polices with respect to this variation of the
economic environment suggest that these insights should also carry over to other fiscal
policy settings.
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Figure 8: Comparison of empirical data (green line) and simulation results (blue line) for the
infection dynamics in a two-step exit from a longer lock-down period.

5 Two-Step Exit from a longer lock-down: The German case
So far, we analyzed how the optimal adaptive policy would look like, if it was introduced
shortly after the first infection has occurred. In many countries, including Germany, the
initial policy response to COVID-19, however, was a strict lock-down for a period of at
least several weeks. In Germany, most stores have been closed on March 17, 2020, followed
by strict contact restrictions on March 22, 2020. The strict lock-down policy ended on May
6, 2020, when most stores reopened. Most contact restrictions were eventually repealed
on June 5. The German government officially announced an adaptive policy that would
reimplement a lock-down if the number of newly infected individuals exceeds a threshold of
50 per week. Compared to the general analysis in Section 4, there are two major differences:
i) The lock-down policy stayed in place for an extensive period of time (80 days in total),
without considering an early exit. ii) The exit is a two-step process, in which opening of
stores and removal of contact restrictions do not coincide. In this section, we analyze the
situation in Germany and examine which strategies should be employed after an extensive
lock-down period. In contrast to Section 4, policy makers now face the question, if, when
and how a second lock-down has to be initiated. Resembling the situation in Germany, in
the following we assume that the initial lock-down period starts three weeks after the virus
outbreak and stays in place for seven weeks. After seven weeks, all shops are reopened and
after additional four weeks, all contact restrictions are removed. Thereafter, we introduce
an adaptive policy, where a new lock-down is initiated, if the number of newly infected
agents during a week rises above the threshold αlo, and terminated once it raises above
that value.
Before proceeding to our policy analysis, we demonstrate that our model is capable of

reproducing infection dynamics in Germany, also for the case of a longer lock-down period
and a two-step exit. Figure 8 shows the simulation results for the setup described above
and the empirical data for Germany. We use the standard calibration from Section 2.4.
Without any re-calibration, our model is able to capture infection dynamics in Germany
for the case of a longer lock-down and two-step exit.
We consider variations in the policy parameters αlo and αo. Since we assume that there

will be no change in the lock-down policy after it has been active for an extensive period
of time, we do not consider any deviation from the default value for αl. For the first part
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Figure 9: Dynamics of currently infected individuals (a) and GDP (b) in exit scenario for the
default policy αlo = 5 (blue), αlo = 1 (red), αlo = 10 (green) and αlo = 50 (purple).

Table 13: Comparison of policy results (exit scenario, variation of αlo).

αlo = 1 αlo = 5 αlo = 10 αlo = 50

GDP loss [%] 2.93 (0.43) 2.6 (0.52) 2.41 (0.16) 2.35 (0.02)

Mortality [%] 0.0102 (0.0034) 0.0105 (0.0043) 0.0134 (0.0071) 0.0122 (0.0059)

Duration Lock-down [add’l days] 24.85 (14.45) 24.5 (69.58) 0.7 (2.15) 0.0 (0.0)

Switch Opening/Lock-down 1.5 (0.76) 0.4 (0.75) 0.1 (0.31) 0.0 (0.0)

Pub. Acc. Deficit [%] 2.9 (0.47) 2.31 (0.27) 2.19 (0.03) 2.18 (0.01)

of this analysis, we again assume that the reduction of the infection probability is not
affected by opening-up the economy (ξo = 0.6). From now on, we activate the short-time
work scheme and government bailout program, since the German government introduced
such measures to cope with the economic consequences of the pandemic.

Exit without increase in the infection probability in the opening-up stage
Panel (a) in Figure 9 shows the dynamics of currently infected individuals for the exit
scenario with full opening of stores (αo = 0) and different threshold values αlo. There is
no significant difference in the dynamics between runs with different values of αlo. This
can be explained by looking at the number of switches between the two policies and the
additional number of days in lock-down after all restrictions have been lifted for the first
time (Table 13). Independent from the threshold, we find that the economy almost never
goes back into lock-down after this point in time. Only for a very low threshold of αlo = 1,
we consistently observe a reintroduction of the lock-down policy. For any αlo ≥ 5, a
switch back to the lock-down is unlikely. After 11 weeks of lock-down, with numbers of
newly infected already declining, the virus is sufficiently under control and will be extinct
regardless of the threshold. Hence, unless set to very low values, the threshold αlo does
not influence infection dynamics in a significant way. Similar infection dynamics result
in similar number of casualties. The mortality for the exit scenario takes values between
0.01% and 0.013% and is in a similar range, compared to the default policy from Section 4.
There is no significant difference in terms of mortality between different values of αlo (see
Appendix B).
Panel (b) in Figure 9 shows the GDP dynamics and Table 13 the corresponding average

values of GDP loss for different threshold parameters αlo. For αlo = 5, αlo = 10 and αlo =

26



Figure 10: Effects of variations of the policy parameters αlo and αo.

Table 14: Comparison of policy results (exit with with ξl = 0.6, ξo = 0.5).

A B C D E
αlo = 5 αlo = 50 αlo = 5 αlo = 50 αlo = 1
αo = 0.0 αo = 0.0 αo = 0.5 αo = 0.25 αo = 0.25

GDP loss [%] 5.88 (0.41) 4.98 (0.42) 5.47 (0.71) 4.64 (0.46) 4.1 (1.14)

Mortality [%] 0.0167 (0.0047) 0.0612 (0.0086) 0.0169 (0.0045) 0.0526 (0.0116) 0.0115 (0.0048)

Dur. Lock-down [add’l days] 111.3 (89.81) 70.0 (82.64) 83.65 (85.57) 31.15 (50.6) 55.3 (62.93)

Switch Opening/Lock-down 6.85 (1.5) 4.95 (0.94) 5.1 (1.52) 2.75 (0.85) 3.15 (2.16)

Pub. Acc. Deficit [%] 4.4 (0.4) 3.38 (0.31) 3.98 (0.59) 3.12 (0.29) 3.66 (0.89)

50 there is no significant difference in GDP loss (see Appendix B) because a reintroduction
of the lock-down policy is unlikely in these cases and they therefore result in similar GDP
dynamics. For αlo = 1 the economy suffers from a significantly higher GDP loss, which
can be fully explained by the additional time the economy stays in lock-down. Apart from
this time differences, the economy recovers in all scenarios. A thresholds of αlo = 1 also
leads to higher public account deficit, since the economy takes longer to recover. Given
no significant difference in casualties between the different policy scenarios, a low value
of αlo linked to a higher GDP loss is inefficient. An optimal policy would therefore be to
choose a threshold sufficiently high to ensure that the economy does never go back to the
lock-down stage (αlo > 10). Given, that all stores have already been reopened in week 8
and the economy never goes back into lock-down, a variation of αo is obsolete.

Exit with increase in the infection probability in the opening-up stage In the
following, we again consider the case in which the relaxation of lock-down measures induces
a reduction in the effect of individual prevention measures and assume that ξ is reduced
to ξo = 0.5 in the opening phase, whereas it has the default value ξl = 0.6 during lock-
down. Since, this makes a second lock-down more likely, we now also consider variations
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in αo, that are however only effective after a second lock-down. Figure 10 shows the effects
of different policies on mortality and GDP loss. The black line indicates the effect of a
variation of the threshold αlo. A movement towards the top of the plot corresponds to
an increase in αlo, towards the bottom a decrease in αlo. The blue lines correspond to
changes in αo, where the point on the black line always represents αo = 0.0, and moving
along the line corresponds to higher values of αo. The default policy (αlo = 5, αo = 0.0)
is labeled with A. The optimal policy from the case without change in ξ (αlo = 50,
αo = 0.0) is labeled with ’B’. From Figure 10 we can already extract some key differences
in comparison to the case without increase in the infection probability. Lower values of αlo
are no longer dominated by higher values. Moving from point ’A’ to ’B’, which corresponds
to an increase of αlo from 10 to 50, still decreases the economic loss, but also significantly
increases the total number of casualties. Second, a full reopening after a second lock-
down is not efficient. Starting from points ’A’ or ’B’, both indicators can be improved by
increasing αo to 0.25 or 0.5 (points ’C’ and ’D’). Even higher values of αo, however, do not
reduce casualties in a significant way, but lead to considerably higher GDP losses. Third,
both indicators can be improved by moving down the black line, decreasing αlo. A very
low threshold, resulting in an early second lock-down, leads to a significantly reduced GDP
loss. The optimal policy is at point E, which combines a very low value for the threshold
parameter (αlo = 1) with a moderately careful second opening (αo = 0.25).
The result that a lower threshold parameter and a smaller degree of opening reduces

GDP loss, seems counter-intuitive at first and requires further explanation. Figure 11
shows the infection and GDP dynamics behind points A to E in Figure 10. Policies A to
D have in common that the number of infected individuals stays comparatively high on
average. At the same time, these policies lead to a much higher variance across runs. By
analyzing the data of individual runs (not depicted here), we can verify that policies A to
D almost always lead to one or more additional infection waves, followed by subsequent
returns to the lock-down policy. Since the starting days and peaks of new waves are not
synchronized across runs, this results in more or less flattish average curves for the infection
dynamics. A more careful opening (policies C and D) is associated with a smaller slope of
the infection curve, thereby increasing the time until another lock-down will be triggered.
Table 14 shows that the additional duration in lock-down can be reduced significantly by
reducing the degree of opening. Moving from point B to D, by setting αo = 0.25, the
average days in lock-down reduces from 70.0 days to 31.15 days. The number of switches
back to the lock-down policy is reduced from 4.95 to 2.75. Table 14 also reveals that
spending more time in lock-down does not necessarily increase GDP loss. At point E, the
average additional time in lock-down is 55.3 days, significantly higher than in D. The GDP
loss, however, is significantly smaller. Panel (b) in Figure 11 shows that the economy starts
to recover later for αlo = 1, but overtakes the other scenarios in the course of simulation.
To explain this result, one has to again look at the individual run data: with the low
threshold of αlo = 1, a second lock-down is initiated early and lasts for a substantially
longer period, compared to all other policies in question. As a consequence of the very
low threshold, the lock-down policy is typically triggered again shortly after exit from the
first lock-down. In return, it becomes very unlikely that the lock-down will be reactivated
later in the simulation. This gives the economy a higher chance of uninterrupted recovery
after an early second lock-down. In contrast, all other policies delay a second lock-down,
but bear the risk of subsequent and late lock-downs, which would overall have more severe
negative economic effects than an early second lock-down period.
Our findings for this section can be summarized as follows: For countries that already

went through an extensive lock-down period, it makes no economic sense to risk a second
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Figure 11: Dynamics of currently infected individuals (a) and GDP (b) for Points ’A’ (blue), ’B’
(red), ’C’ (green), ’D’ (purple), ’E’ (orange).

wave. In case the opening has no negative side effects on the efficiency of individual
prevention measures, a second wave is very unlikely to happen and a second lock-down
is unnecessary. If, however, the individual infections probability increases as a result of
opening up the economy, a second wave can only be avoided by a very strict threshold
parameter. Higher threshold parameters would only delay an adequate response to an
upcoming second wave and lead to economic costs of a late lock-down, that exceed the
costs of an early second lock-down.

6 Conclusions
In this paper we develop a simulation model capable of jointly describing epidemiological
and economic effects of measures aimed at containing the COVID-19 pandemic. The
model has been calibrated using German data on the spread of COVID-19 and is well-
suited to replicate the course of the pandemic and economic effects of chosen policies in
Germany. We consider several real-world policy measures that have been employed in
the fight against COVID-19. This includes measures without direct economic impact, i.e.
social distancing, home-office and individual prevention measures as well as measures that
imply a reduction of economic activity, i.e. the closure of shops and services. In addition,
we consider short-time working schemes and firm bailout programs aimed at mitigating
the economic impact of COVID-19 and the associated containment measures.
We employ our model to, first, analyze the effect of different policy measures in a generic

setting and, second, to explore optimal strategies for Germany after a long initial lock-
down period of 11 weeks in total. Our analysis is based on the following two-stage policy:
Two weeks after the appearance of the first infected individual, a lock-down policy is im-
plemented, which is relaxed as soon as the number of newly infected individuals falls below
a certain threshold (open-up-stage) and is re-implemented in case this number exceeds this
threshold again. In both, the lock-down- and open-up-stage, the policy maker has to set
the degree of closure/opening and hence has three parameters of freedom including the
threshold. We start from a default policy and then systematically examine the implica-
tions of varying the three parameters. We find that having a threshold above 5 newly
infected per 100.000 individuals is generally not efficient. At a threshold of 5, varying the
degree of closure during lock-down shows that there is a trade-off between economic cost
and mortality of the virus. For the opening-up stage it is efficient to fully or at least almost
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fully lifting restrictions on economic activities. These results, however, crucially depend
on unaltered efficiency of individual prevention measures. In case that opening-up leads
to an increase in individual infection probability, the costs of having a higher lock-down
threshold strongly increase and a more cautious opening is efficient. Regardless of the cho-
sen containment measures, the introduction of economic support measures, avoiding mass
unemployment and bankruptcies, reduces the economic loss of the containment measures
by a factor of approximately two without generating a higher deficit in the public account.
As a second part of our analysis, we apply our model to the German case in order to find

optimal exit strategies from a longer lock-down period. As a response to the pandemic, the
German government introduced a lock-down period of approximately 7 weeks for stores
and 11 weeks for social contacts, followed by an adaptive policy with a threshold of 50
newly infected per 100.000 individuals. Measures to contain the pandemic have been
accompanied by measures to mitigate the negative economic impact, i.e. a short-time
working scheme and a bailout program for firms in distress. We also incorporate these
measures in our model. Our analysis shows that, after the longer lock-down period, a
second wave of infections is unlikely and a high threshold of 50 is reasonable. This again
crucially depends on the unabated efficiency of individual prevention measures. If the
individual infection probability increases as a result of the opening, we propose to set a
very low threshold in order to immediately react to an increase in the number of newly
infected individuals, since a delayed reaction would lead to higher economic costs later on.
The existing literature on the spread and economic consequences of COVID-19, so far,

is mainly based on simple, analytical economic models that cannot be easily applied to
real-world policy scenarios. Our main contribution is the integration of a standard SIRD-
type epidemiological model into a rather rich agent-based macroeconomic framework. This
approach allows us to jointly study the epidemiological and economic effects of different
containment measures and to shed light on the interplay between economic activity and
propagation of the virus. In addition, we are able to analyze the effects of detailed real-
world economic policies, such as short time working schemes and bailout programs. Using
data from Germany, we show, that the approach is capable of replicating both epidemio-
logical and economic facts and serves as a useful tool for policy analysis. The model can
be calibrated to data from other countries and easily extended to analyze the effects of
other policies like policies specifically tailored at protecting the elderly. Another promising
extension is the integration of heterogeneity of infection probabilities across individuals
to account also for super-spreaders, i.e. individuals that have a much higher tendency to
infect others and are suspected to play an important role in the propagation of COVID-
19. Also, epidemic and economic effects of (clustered) social networks determining contact
schemes and the effect of different variants of (targeted) quarantine policies can be ana-
lyzed in the framework of the model developed here.
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Appendix

A Detailed Model Description
In this appendix, we provide a more detailed description of the model introduced in Sec-
tion 2. The model has been implemented in Julia, the code is open source and can be
downloaded from https://github.com/ETACE/ace_covid19.

A.1 Timing

The basic unit of time in the model is one day. denoted by t ∈ N+. The economic activities
of the agents, however, take place on a weekly basis, where firms’ production planning,
labor market activities and delivery to the malls all take place at the first day of the
week. Households consumption is spread out during the week since each household for
each sector has a (randomly determined) shopping day during the week. In what follows,
we denote by w ∈ N+ the weeks during the simulation runs and when indexing a variable
with the subscript ‘w’ we always refer to the first day of week w.

A.2 The Economy

A.2.1 Firms

A firm i ∈ Fw acts as a producer on the goods market and as employer on the labor
market. It is assigned to one of the private sectors k ∈ {M,S, F} and delivers only the
mall that sells the products of sector k. Thus, all firms belonging to the same sector k
compete on the product market and form a set of direct competitors Fk,w of size nk,w in
week w.

Production Planning A firm i is characterized by a firm-specific level of labor produc-
tivity Ai that is constant over time. The output of a firm is produced with labor as only
input. Denote by Li,w the number of workers employed by firm i in week w, the output
of that firm is given by

Qi,w = AiLi,w. (1)
Production takes place on a weekly base. The production day is for all firms the same

and fixed at the first day of the week. The output is delivered to the mall where each firm
keeps an inventory stock. While the inventory is replenished once per week at the day of
production, the products in the mall inventory can be sold on a daily base.
The output planning of a firm is based on a simple inventory rule with adaptive demand

expectations, where D̂i,w is the expected demand, which is updated according to

D̂i,w = (1− ρD)D̂i,w−1 + ρD Di,w−1, (2)

where ρD ∈ (0, 1) is a persistence parameter of the expectations and Di,w−1 is the sum of
the daily sales in the previous production and sales cycle. Denote by Yi,w the inventory
stock of firm i in the mall at the end of week w. Then the planned output quantity for
the current production cycle is determined by

Q̃i,w =
{

(1 + χk)D̂i,w − (1− δk)Yi,w−1, if Yi,w > 0
(1 + ι · χk)D̂i,w if Yi,w = 0

(3)

where χk > 0 captures the size of a sector-specific inventory buffer and ι > 1 captures
that firms might increase their buffer when their stock was sold out in the previous period
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since this is seen as a a signal for an expansion in demand. Parameter δk ∈ [0, 1] describes
a sector-specific depreciation of the inventory at the end of the sales cycle.
For reasons of simplicity we abstract from production time and the produced quantity is

delivered to the mall at the beginning of the week before consumption starts. The inventory
stock then updated every day depending on the weekly inflow of the replenishment and
the daily outflow of sales. At a generic iteration t, the inventory stock in the mall changes
according to21

Yi,t =
{

(1− δk)(Yi,t−1 −Xi,t−1) +Qi,t if t mod 7 = 1
Yi,t−1 −Xi,t−1 else. (4)

Labor Input Given the planned production volume and firm’s production technology,
the labor demand of the firm reads

L̃i,w = Q̃i,w
Ai

. (5)

Depending on the size of the workforce Li,w−1 employed for the previous production cycle,
the labor demand L̃i,w implies to hire additional workers or to dismiss some redundant
workers of the firm. In the former case, i.e. if L̃i,w > Li,w−1, the firm has LVi,w = L̃i,w −
Li,w−1 vacancies from which, depending on the outcome of the labor market, LFi,w ≤ LVi,w
will be filled. In the latter case, the firm has LRi,w = Li,w−1 − L̃i,w redundancies and the
firm chooses randomly LRi,w workers from the set WF

i,w of current employees to be fired.
Altogether, the size of the workforce evolves according to

Li,w =
{
Li,w−1 + LFi,w if L̃i,w > Li,w−1
Li,w−1 − LRi,w else. (6)

The weekly wage that firms pay to their workers is assumed to be constant over time. It
is sector-specific and proportional to the average productivity Āk of the sector k in which
firm i is active, i.e. 22

wi = wk = ψkĀk with ψk > 0. (7)

Pricing and Accounting The firm applies mark-up pricing with an endogenous mark-
up µi,w > 0 on unit costs to determine the price of its product. The unit costs of a firm
are determined by the variable labor costs and fixed costs cFi . The unit costs are then

ci =
wi + cFi

Li,w

Ai(1− χkδk)
, (8)

such that the price of the firm is

Pi,w = (1 + µi,w)ci. (9)

The mark-up is updated at the day of production and depends on the market share
of the firm. Denote by si,w the market share (in terms of sold quantity) of firm i on its
relevant market in week w, then the mark-up equals

µi,w+1 = µ
k

+ si,w · (µ̄k − µk), (10)
21Here and below t mod 7 denotes t modulo 7, i.e. t − 7bt/7c, where bxc denotes the largest integer

smaller or equal than x.
22ψk = (1−χkδk)

(1+λk)(1+µ
k

) is the sector specific wage factor.
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where µ̄k and µ
k
are parameters determining the upper and, respectively, lower bound for

the mark-up in sector k.
Accounting takes place at the day of production and is related to the previous production

cycle. The profits of firm i accounted for in period w reads

Πi,w = Pi,wDi,t − Li,wwi − cFi . (11)

The liquidity of the firm evolves according to

Si,w = Si,w−1 + Πi,w−1 −max[0, τw−1Πi,w−1]− di,w − cFi (12)

Here, τw is the tax rate for corporate taxes on (positive) profits and di,w are dividends
paid out to the firm’s shareholders. For the dividends, we define a dividend rate ζ ∈ (0, 1)
and a threshold savings level being proportional to the average firm revenues over the last
T weeks, i.e.

S̃i,w = βk
1
T

T−1∑
τ=0

Πi,w−τDi,w−τ . (13)

Firms pay out their entire (after tax) profits as dividend once their savings are above that
threshold, otherwise they put a fraction of the profits into their savings:

di,w =
{

(1− τw) max[0,Πi,w] if Si,w−1 + (1− τw) max[0,Πi,w] > S̃i,w
ζ(1− τw) max[0,Πi,w] else, (14)

with ζ < 1. The dividends as well as fixed costs are distributed equally to all households.
If a firm has a negative payment account at the end of the accounting, it has to declare

bankruptcy. In this case, the firm becomes inactive and has to dismiss all workers. At the
same time, the inventory of its product stored in the mall is fully written off.

A.2.2 Households

There are mt households populating the economy. A household h ∈ Ht acts as costumer
on the goods market and, depending on her age, as an employee on the labor market.

Age Structure and Labor Supply Households are classified into a young cohort HY
t

and an old cohort HO
t . Members of the old cohort are retired, whereas households in

the young cohort constitute the labor force of the economy. A young household can be
employed or unemployed. If a household is unemployed, she enters the labor market to
search for a new job.
Households have work-related skills that can only be utilized in one of the sectors k ∈
{M,S, F} and cannot be transferred to other sectors. Thus, households are uniquely
assigned to one sector and determine the sector-specific labor supply LSk,t. Apart from the
private sectors, there is also a public sector (indexed by k = P ) that does not produce
any market goods. In this sector, the government operates nP offices and households that
work for the government as civil servants have a permanent and secure job.
In each sector, we assume that there is a fixed proportion hHOk of workers qualified to

execute specific tasks that can potentially be done from home. The workers for whom it
is possible to carry out home-based office work are summarized in set LHOk,t ⊂ LSk,t.
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Income and Saving Decision Depending on their age and employment status,
households have different income sources. Employed households earn a labor income ωh,w
that equals the wage wk of the sector k in which a household is employed. Unemployed
households, instead, receive unemployment benefits uh,w from the government that corre-
spond to a fraction ν of her last labor income. Old households live on pensions of level wP
that are paid by the government and are uniform and constant over time for all retirees
in the economy. Additionally, all households receive a capital income that correspond to
an equal share of the fixed costs paid by firms and dividends distributed by the firms, i.e.

ICaph,w = 1
mw

∑
∀i∈Fw

(di,w + cFi ). (15)

Altogether, the overall gross income Ih,w of household h in week w equals

Ih,w =


ωh,w + ICaph,w if employed,
uh,w + ICaph,w if unemployed,
wP + ICaph,w if retired.

(16)

All sources of income are subject to income tax. Given tax rate τw, the net income of
household h is then

INh,w = (1− τw)Ih,w. (17)

On the first day of the week, the household decides on the budget Ch,w that she plans to
spend in the coming week. For the consumption and saving decision, the household takes
into account an average net income

ĪNh,w = (1− ρI)Īh,w−1 + ρIINh,w (18)

as well as her total wealth Wh,w, which consists of her money holdings. The notional
consumption budget is determined according to the consumption rule

Ch,w = ĪNh,w + κ · (Wh,w − Φ · ĪNh,w), (19)

where the parameter Φ is the target wealth/income ratio. This formulation is motivated
by the “buffer stock” theory of consumption which is backed up by theoretical arguments
and substantial empirical evidence (see Deaton, 1991, Carroll and Summers, 1991). The
parameter Φ describes how large the targeted buffer is relative to income, and κ indicates
how sensitively consumption reacts to deviations of the actual wealth-to-income ratio to
the target level.
Finally, the consumption budget Ch,w is allocated to the different sectors. In principle,

the budget that a household h tries to spend for products from sector k ∈ {M,S, F} is
determined by a fixed allocation across sectors, i.e.

C̃Sh,k,w = ck Ch,w. (20)

However, sector k = F is different from the other sectors in a way that it includes essential
goods implying that households try to avoid large spending cuts for these products. Hence,
the actual consumption budget allocated to the essential sector F is

CSh,F,w = max
[
cF Ch,w,min

[
(1− φ)CSh,F,w−1, Ch,w

]]
. (21)
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The remaining budget, instead, is distributed proportionally among the non-essential sec-
tors k 6= F according to the consumption quotas ck such that

CSh,k,w = ck∑
l∈K\{k∗} cl

(Ch,w − CSh,F,w). (22)

A households has different shopping days for the products, where the actual expenditures
can deviate from planned ones due to rationing (see below). Denote by Eh,t ≥ 0 the total
expenditures for consumption on a generic day t, then the savings of household h evolve
according to

Wh,t =
{
Wh,t−1 − Eh,t−1 + INh,t if t mod 7 = 1
Wh,t−1 − Eh,t−1 else. (23)

A.2.3 Labor Market Interactions

The labor market is modeled as a decentralized market with separated sub markets for
each sector. The labor market operates every first day of the week to match open vacancies
and job seekers. All firms belonging to sector k that have open vacancies LVi,w > 0 try
to get matched with the unemployed workers US

k,w searching for a job in sector k. All
households h ∈WS

P,w that work in the public sector stay with their employee throughout
the simulation run and are never active on the labor market.
The matching process is modeled in a way that firms open vacancies in a random se-

quence and unemployed job seekers with appropriate skills apply. The firm then hires on
a first-come-first-serve basis. If at the time of the announcement of the job opening there
are no unemployed job seekers with appropriate skills, the firm is rationed and can only
hire again in the following week.
More precisely, suppose Vk,w is the randomly ordered set of firms in the queue of sector

k in week w and vl ∈ Vk,w is the firm ranked at the l-th position. Denote by L̃Sk,w,l the
number of unemployed in sector k after firm vl has been active on the labor market with
L̃Sk,w,0 = |US

k,w|. Then for all firms vl ∈ Vk,w we have that the number of hired respectively
fired workers in week w is given by

LFi,w = min[L̃i,w − Li,w−1, L̃
S
k,w,l−1] if L̃i,w ≥ Li,w−1

LRi,w = L̃i,w−1 − Li,w else.
(24)

The number of unemployed evolves according to

L̃Sk,w,l = L̃Sk,w,l−1 − LFi,w + LRi,w.

Hence, a firm might be rationed on the labor market if the number of job-seekers when
the firm is active on the market is below its labor demand. It might happen that firms
that become active after a rationed firm can nevertheless hire because some firm in the
queue in-between has fired workers.

A.2.4 Goods Market Interactions

Once per week, a household determines randomly a shopping day for each sector within
the next 7 days. At the respective shopping day for sector k, the household h visits a mall
in which those products are sold. Denote by Ck,t the ordered set of costumers shopping
in sector k at day t and by cl ∈ Ck,t the consumer at the l-th position in the queue.
Furthermore, denote by Ỹi,t,l the inventory of firm i in the mall after consumer cl has
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completed her shopping and by At,l the set of active firms at that point, i.e. those firms i
for which Ỹi,t,l > 0 holds.
Consumer cl draws a random subset Ωcl,k,t ⊆ At,l of size η of the products offered by

active firms in the mall. The decision which product i ∈ Ωcl,k,t of sector k to purchase
is based on a logit choice model. The probability to buy the product from firm i that is
offered at price Pi,wt , where wt is the week of day t, is

P[cl selects i ∈ Ωcl,k,t] = exp(−γC log(Pi,wt))∑
∀j∈Ωcl,k,t

exp(−γC log(Pj,wt))
, (25)

where γC is a parameter for the price sensitivity of households. The notional quantity to
purchase is then

Ccl,i,t = min
[
CScl,k,wt
Pi,wt

, Ỹi,t,l−1

]
. (26)

The stock of the product of firm i still available at the mall is updated according to

Ỹi,t,l = Ỹi,t,l−1 − Ccl,i,t. (27)

If Ỹi,t,l = 0, then the firm becomes inactive in the mall at this point and only becomes
active again at the first day of the following week when new quantities of the product
are delivered to the mall. If there are no active firms in the mall when a household h
visits the mall or if the chosen firm is not able to supply to total amount demanded, i.e.
Ỹi,t,l−1 <

CScl,k,wt
Pi,wt

, then the consumer is rationed and returns to the mall again the following
day. All parts of the foreseen weekly consumption budget for sector k which have not been
spent at that point are added to the household’s savings.

A.2.5 Government and Public Sector

The government collects income and profit taxes to fund the civil servants working in one
of the nP offices in G comprising the public sector, the payment of unemployment benefits
and pensions to old households. Additionally, the government can pay subsidies or other
financial support to households and firms as part of additional policies.
Each office g ∈ G of the public sector employs a set of civil servants WG

g ⊂ HY
0 that

does change over time only if an employee dies. The total number of civil servants in the
economy in week w is denoted by LPw .
Unemployment benefits are based on the last wage of an unemployed worker with re-

placement rate ν. Pensions are uniform for all old households and are a percentage pen of
the average wage in the economy. Households employed in the public sector earn a wage
wP .
Tax collection and distribution of unemployment benefits and pensions takes place at

the first day of the week. The tax revenue of the government is the sum of the corporate
tax revenues

TCw =
∑
i∈Fw

max[0, τw Πi,w] (28)

and the income tax revenues are

T Iw = τw
∑

h∈Ww

ωh,w + τw
∑
h∈Hw

ICaph,w + τw
∑
h∈Uw

uh,w + τww
P |HO

w |, (29)
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where Ww denotes the set of all employed households in the economy in week w. Denoting
by Uw the set of unemployed workers in the economy, the public account of the government
evolves according to

SGw = SGw−1 + TC + T I −
∑
h∈Uw

uh,w − wP |HO
w | − wS0 LP (30)

The government adjusts the tax rate over time in order to keep a target level of the
public account. In the baseline setup, the tax rate τw evolves according to

τw = (1− ρT )τw−1 + ρT τ̂w, (31)

where τ̂w is the tax rate that would be sufficient to balance the budget on a target public
account level. In particular,

τ̂w = max
[
0,

∑
h∈Uw

uh,w + wP |HO
w |+ wS0 L

P − θSGw
TC

τ +
∑
h∈Ww

ωh,w

]
, (32)

Note that the target level of public account and the speed of tax rate adjustment might
change as part of policy.
Finally, the government compute the gross domestic product for the last week according

to
GDPw = wS0L

P +
∑
k∈K

∑
i∈Fk,w

Pi,wQi,w. (33)

A.2.6 Social Interactions

Social interactions take place in three different occasions. The first type of social inter-
actions occurs at work. Firms and public offices represent the work environment where
social contacts in the professional context occur. Suppose Xh,t = WF

i,t \ {h} is the set
of household h’s colleagues at time t (or Xh,t = WG

g \ {h} for public servants). As long
as she is not in the short-term program or working from home, the worker faces several
potential meetings with her co-workers, where

X̃h,t =
{
∅ h ∈ (WHO

i,t ∪WST
i,t ),

Xh,t \ (WHO
i,t ∪WST

i,t ) else, (34)

is the set of co-workers worker h can potentially meet during a workday. As defined above,
WHO

i,t is the set of workers in home-office and WST
i,t is the set of workers on short-time

work on day t. The realized number of meetings is drawn from a distribution where the
maximum contact threshold nwk might differ across sectors. The number (cardinality)
of colleagues N cw

h,t ∈ [0, nwk ] met by agent h is a uniform random draw with probability
pcwk = 1

nw
k

+1 . The set of actually met co-workers of agent h at time t is CWh,t ⊂ (X̃h,t∪∅).
The second possibility to interact with other households takes place during shopping.

Households visit different shopping malls within a week in order to purchase or consume
goods offered by the three private sectors. The maximum number of possible meetings
at one shopping day is drawn from a distribution where the upper threshold nck is sector
specific. The actual number of people met in the specific mall is given by the fraction of
the population going to that mall times the maximum number of possible meetings across
the week. Thus, if one seventh of the local population is going to that mall, the number
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of contacts when shopping will be equal to the maximum number of possible contacts.
Formally

N cs
h,k,t = N̄ cs

h,k,t ·
|Ck,t|
|Ht|

· 7, (35)

where |Ck,t| is the number of customers of sector k at time t and Ck,t =
∑
i Ci,t, |Ht| is

the number of households at time t, N̄ cs
h,k,t ∈ [0, nck] is the upper bound cardinality of co-

shoppers met by agent h in sector k at time t and it is drawn from a uniform distribution
with probability pcsk = 1

nc
k
+1 . Thus, the actual set of individuals met while shopping at the

local mall is drawn from a distribution, multiple meetings with the same household are
possible. CSh,k,t ⊂ Ck,t is the set of met co-shoppers of agent h in sector k at period t.
Finally, households engage in other social activities, where those social interactions are

characterized by heterogeneous cross age patterns. In particular, the number of contacts
for each type of cross age meeting is drawn from a uniform distribution whose upper bound
npa,a with a ∈ {y, o} reflects the cross age interaction patterns. In case of a positive number
of contacts for period t, potential partners are drawn among the population belonging to
the specific age group. Ha

−h,t is the set of households belonging to a specific age group
(young or old) surrounding agent h at time t. We select the number (cardinality) of people
Na,a
h,t ∈ [0, npa,a] met by agent h at time t with probability psaa,a = 1

npa,a+1 . Then, the set of
households belonging to a specific age group met by agent h at time t is SAa

h,t ⊂ Ha
−h,t.

A.2.7 Pandemic Dynamics

Households differ with respect to their health states. At every instant of time t, each
household h may be in one of four states. "Susceptible", not yet been exposed to the
virus and thus not immune, "Infected" already contracted the virus, "Recovered" been
infected, survived the virus and acquired immunity and "Deceased" died from the virus.
In particular, we further detail the infected state into three different phases which do
matter in terms of virus transmission. Thus, we distinguish between a latency phase of
length tlnt, an infectious phase of length tinf and a post-infectious period where one has
not yet recovered. t̄rec is the maximum number of days being infected or the recovery
time. The set of households belonging to the four health states are denoted by St, It,
Rt and Dt, respectively. The set of infectious agents is denoted by Iinft ⊆ It and that of
newly infected people is denoted by Tt. Thus the population of alive households evolves
together with the epidemic and changes over time such that:

Ht = St + It + Rt. (36)

In other words, the population decreases due to death from the disease while we abstract
from other demographic dynamics such as births and other causes of death. We assume
that the initial stocks of infected, recovered and deceased individuals are set equal to zero.
Hence, before the outbreak of the epidemic, the entire initial population of household
belongs to the susceptible group.
At period t = t0, the epidemic starts. The initial infected agents are randomly selected,

their state is updated and their recovery countdown starts. The rest of the population
stays susceptible but is exposed to three channels through which the infection can be
transmitted, social contacts at work, during consumption and other social occasions, where
only meetings with infectious households might result in the contagious.
In every contact between an infectious household h ∈ Iinft and a susceptible household

h̃ ∈ St the virus is transmitted with a probability (1 − ξ)pinf , where without any policy
measure ξ = 0. An infected agent h at each possible day has a small probability qat to die
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from the virus. In this case, she is removed from the unemployment list if unemployed
or from the list of workers of her employer if employed. Also the number of casualties is
updated. After t̄rec days of infection the household is recovered and afterwards immune
to the virus.
The case fatality rates qat with a = {y, o} do not only depend on the age of the household,

but also on the degree of utilization of intensive care units in the economy at t. In case of
a over-utilization, the rate is increasing with |It|. In particular, depending on the degree
of over-utilization, the age-specific fatality rate is a weighted average between a regular
fatality rate q̄al achieved with under-utilized intensive care units and a fatality rate q̄ah that
would be achieved if no intensive care capacities would be available. Formally

qat =
[

min(nicu, uicu · |It|)
uicu · |It|

]
q̄al +

[
1− min(nicu, uicu · |It|)

uicu · |It|

]
q̄ah (37)

where nicu, uicu, |It| are, respectively, the number of intensive care beds available, the
fraction of infected individuals in need of intensive care and the total number of actual
infected.
We assume that after tvac days from the beginning of the pandemic, a vaccine is available

on the market and all susceptible households are assumed to receive immediate vaccination.
Thus, the probability of infection pinf goes to zero and the epidemic washes out as soon
as infected households recover or die.

A.3 How to compute the R0 index

A widely used statistic to recognize the strength of an epidemic is the basic reproduction
number R0. This statistic is the expected total number of infections directly generated by
one infected person, in other words the average number of people to whom one infected
person will pass the virus. The higher the value of R0, the faster is the spread of the virus.
Direct observations and estimations of R0 are possible in our model. A direct observation
can be achieved by taking the simple daily average of the number of secondary infections
of each infected individual

R0,t = 1
|Ht|

∑
h

I2
h,t (38)

where I2
h,t is the cumulative number of secondary infections caused by household h at

time t.
With respect to estimation, we follow the methodology applied by the Robert Koch

Institute. The generation time describes the average time span from the infection of a
person to the infection of the subsequent cases infected by that same person. It corresponds
approximately to the serial interval, which indicates the mean duration between the onset
of illness in a case and the onset of illness in its subsequent cases. We estimate this
period of time to be tgen days because the infectivity at the beginning of the infection
is particularly high and the infected person is not aware before the onset of symptoms
that she can already infect others.23 With a constant generation time of tgen days, the
reproduction number is the fraction between the number of new illnesses in two successive

23The generation time is not a stable property of the pathogen, but, like the reproduction number,
depends on various factors and can change over time. For example, measures to isolate confirmed cases and
quarantine contact persons not only reduce the number of follow-up cases, but also shorten the generation
time because the few infections occur right at the beginning of the infection.
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time segments of tgen days each.

RRKI0,t =
|It + Rt| − |It−tgen + Rt−tgen |

|It−tgen + Rt−tgen | − |It−2tgen + Rt−2tgen |
(39)

The RRKI0 value determined in this way is assigned to the last of these 2 ·tgen days because
only then all the information is available. Therefore, the RRKI0 -value does not describe
a single day, but rather an interval of tgen days. If the number of new cases increased in
the second period, the RRKI0 is above 1. If the number of new cases is the same in both
periods, the basic reproduction number is 1. This corresponds to a linear increase in the
number of cases. If, on the other hand, only every second case infects another person, i.e.
RRKI0 = 0.5, then the number of new infections halves within the generation period. The
basic reproduction number alone is not sufficient to describe the current state of evolution
of the pandemic. At least the absolute number of new illnesses and also the intensive care
capacity utilization have to be considered in order to get an adequate picture.24

24Another aspect is also that the test capacities in Germany have been increased significantly and thus a
larger part of the infected becomes visible. This structural effect and the resulting increase in the number
of reports can lead to the current RRKI0 -value somehow overestimating real events. Adjustment for the
higher test rates is not possible because there is no sufficiently differentiated test data. Nevertheless, we
weight all our calibration according to the German detection rate, see Bommer and Vollmer (2020)
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B Statistical Tests
This appendix provides the results from statistical tests we referred to in Section 4 and
5. To verify the statistical significance for differences between point A and points B, C, D
and E in Figure 3, 5, 7 and 10 as well as between thresholds in Table 13 in mortality and
average GDP loss, we use the Mann-Whitney-U test, a non-parametric test for unpaired
samples. We document the p–values in Tables 15 - 19, which are based on 20 batch runs.

Table 15: p–values for Mann-Whitney-U tests between
points from Figure 3.

Point A
mortality average GDP loss

Point B < 0.0001 < 0.0001
Point C 0.0904 < 0.0001
Point D < 0.0001 0.1022
Point E 0.0682 < 0.0001

Table 16: p–values for Mann-Whitney-U test between
points from Figure 5.

Point A
mortality average GDP loss

Point B < 0.0001 < 0.0001
Point C 0.1499 0.1207
Point D < 0.0001 0.0013
Point E 0.8494 < 0.0001

Table 17: p–values for Mann-Whitney-U test between
points from Figure 7.

Point A
mortality average GDP loss

Point B < 0.0001 < 0.0001
Point C 0.1426 < 0.0001
Point D < 0.0001 < 0.0001
Point E 0.5142 < 0.0001

.
Table 18: p–values for Mann-Whitney-U test for thresholds
from Table 13.

αlo = 50
mortality average GDP loss

αlo = 1 0.4385 < 0.0001
αlo = 5 0.4394 0.1207
αlo = 10 0.4559 0.2315

Table 19: p–values for Mann-Whitney-U test between
points from Figure 10.

Point A
mortality average GDP loss

Point B < 0.0001 < 0.0001
Point C 0.3702 0.0112
Point D < 0.0001 < 0.0001
Point E 0.0021 < 0.0001
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C List of Variables

Table 20: List of variables.

Symbol Description

Firms
Ai Labor productivity
Di,w Sum of daily sales in the previous sales cycle
D̂i,w Demand expectation for the production and sales cycle starting in week w
Fw Set of all private firms
Fk,w Set of firms in sector k
Li,w Labor input in the production and sales cycle starting in week w
L̃i,w Planned labor input for the production and sales cycle starting in week w
LVi,w Open vacancies in week w
LRi,w Redundancies in week w
Pi,w Price in week w
Πi,w Profits of firm i in the previous production cycle
Qi,w Realized output in the production and sales cycle of week w
Q̃i,w Planned output for the production and sales cycle of week w
Si,w Available liquidity in week w
S̃i,w Threshold liquidity level for dividends in w
Xi,t Sales in period t
Yi,t Inventory stock available for sale in period t
ci Unit costs
cFi Fixed costs
di,w Dividends paid out by firm i to its shareholders in week w
µi,w Mark-up in week w
nt Number of firms at time t
nk,w Number of firms in sector k in week w
si,w Market share of firm i in week w
wi Wage equal to sectoral wage wk
Households
Ch,w Consumption budget
C̃Sh,k,t Intended consumption budget for sector k
Ch,i,t Desired quantity of product i
CSh,k,t Actual consumption budget for sector k
Eh,t Total expenditures in period t
Ht Set of all households at time t
HY
t Set of all young households

HO
t Set of all old households

ICaph,w Capital income of a household
Ih,w Total gross income of a household
INh,w Total net income of a household
Īh,w Smoothed average net income of a household
Wh,w Wealth of a household
mt Number of households at time t

Continued on next page
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Table 20 – continued from previous page – List of variables
Symbol Description

ωh,w Wage of household h in week w
uh,w Unemployment benefits of household h in weekw
wP Level of pension

Labor market
LSk,w Set of workers forming the labor supply in sector k
LSk,w, Number of job seekers in sector k
LHOk,w Set of workers in sector k that are eligible to work from home
Uw Set of all unemployed households
US
k,w Set of all unemployed households qualified for sector k

Vk,w Set of all firms of sector k with open vacancies
WF

i,w Set employees of firm i in week w
WG

g Set of civil servants working for the public office g
WHO

i,t Set of home office workers of i at time t
WST

i,t Set of short time workers of i at time t

Goods market
Ci,t Set of clients of firm i at period t
Ck,t Set of clients of a sectoral k mall at period t
Ωh,k,t Set of products of sector k considered for consumption choice of household h

Social Interactions
CSh,k,t Set of co-shoppers of agent h in sector k at time t
CWh,t Set of co-workers of agent h at time t
Na,a
h,t Number of people met during social activities by agent h at time t divided per

age group
N cs
h,k,t Number of co-shoppers met by agent h while shopping in sector k at time t

N̄ cs
h,k,t Maximum number of co-shopper eventually met by agent h in sector k at time

t
N cw
h,t Number of co-workers met by agent h at time t

SAa
h,t Set of households belonging to a specific age group met by agent h at time t

Xh,t Set of colleagues of household h at time t

Government
G Set of all public sector offices
GDPw Gross domestic product of the previous week
LP Number of civil servants working for the government
SGw Public account
TCw Corporate tax revenues
T Iw Income tax revenue
WS

P,w The set of civil servants working for the government
τw Tax rate
τ̂w Reference tax rate
wSP Wage paid in the public sector

Pandemic
Dt Set of deceased at time t
It Set of actual infected at time t

Continued on next page
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Table 20 – continued from previous page – List of variables
Symbol Description

Iinft Set of infectious agents
I2
h,t Cumulative number of secondary infection caused by agent h at time t

Rt Set of recovered at time t
R0,t Daily basic reproduction number
RRKI0,t Robert Koch Institute reproduction number estimation
St Set of susceptible at time t
Tt Set of new infected between time t and t+ 1
qat Individual Case Fatality Rate at time t

D List of Parameters

Table 21: List of parameters.

Symbol Description Value

Firms
[Āk] Sector specific average productivity [97, 62, 48, 62]
[βk] Target of firm savings relative to av. revenues

during last 4 weeks
[1, 0.5, 0.5, 0]

[χk] Size of the sector specific weekly inventory buffer [0.0036, 0.0011, 0.0018, 0]
[δk] Sector specific weekly depreciation rate of the

inventory
[0.01, 1.00, 0.50, 0.00]

[ek] Estimated employment shares [0.1170, 0.4362, 0.3268, 0.1200]
ι Production boost in case of stock-out 4
[λk] Weekly fixed to variable cost ratio [0.0752, 0.048, 0.048, 0.048]
n0 Initial number of private firms 3780
[µ̄k] Upper bound firm mark-up [0.18, 0.18, 0.18, 0]
[µ
k
] Lower bound firm mark-up [0.25, 0.25, 0.25, 0]

[psk] Probability of shopping k ∈ {M,S, F} [1, 1, 1]
ρD Firm demand expectation smoothing 0.5
ζ Dividend payout ratio 0.7

Households
ay0 Fraction of the young households 0.75
[ck] Fixed consumption quotas [0.21, 0.50, 0.29]
η Number of products from which households

choose consumption
4

γc Intensity of consumer choice 16
[hHOk ] Sector proportion of home-office workers [0.45, 0.30, 0.00, 0.75]
κ Adjustment wealth/income ratio 0.1/4
m0 Initial number of households 100000
[nwk ] Work contact cardinality upper bound sector

specific
[8, 8, 8, 8]

[nck] Shopping contact cardinality upper bound sec-
tor specific (manufacturing, service, food)

[10, 28, 10]

Continued on next page
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Table 21 – continued from previous page – List of parameters
Symbol Description Value

[npa,a] Cross-age contact cardinality upper bound
yy,yo,oy,oo

[5, 2, 4, 2]

ν Wage replacement rate 0.60
Φ Target wealth/income ratio 32
φ Adjustment parameter consumption budget for

essential product
0.01

[ψk] Wage factor [0.7882, 0.8078, 0.8079, 0.9542]
ρI Income expectation smoothing 0.4

Government
nP Number of public offices 600
pen Pension as fraction of average wage 0.50
ϕ Replacement rate of the short term program 0.7
ρT Adjustment speed of the tax rate 0.05
θ Fraction of public debt erased/added in one

week
1/520

Pandemic
δr Detection rate 0.15
nicu Number of intensive care units available per

agent
30 ∗ 10−5

pinf Infection probability in a single contact 0.0725
[q̄al ]a=y,o individual fatality rate with underutilization of

ICU
[0.00099, 0.024]

[q̄ah]a=y,o individual fatality rate with overutilization of
ICU

[0.0027, 0.075]

t0 Starting date of the pandemic 14
tlnt Latency period of the disease 5
tinf Infectious period of the disease 5
tgen Generation time 4
t̄rec Maximum number of days being infected or re-

covery time
21

tvac Number of days after the pandemic for vaccine
availability

379

uicu Fraction of infected people needing intensive
care

0.01275

ξ Reduction of infection probability coefficient de-
fault value

0
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