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Abstract

This paper is devoted to the multidisciplinary modelling of a pandemic
initiated by an aggressive virus, specifically the so-called SARS–CoV–2 Se-
vere Acute Respiratory Syndrome, corona virus n.2. The study is developed
within a multiscale framework accounting for the interaction of different spa-
tial scales, from the small scale of the virus itself and cells, to the large scale
of individuals and further up to the collective behaviour of populations. An
interdisciplinary vision is developed thanks to the contributions of epidemi-
ologists, immunologists and economists as well as those of mathematical
modellers. The first part of the contents is devoted to understanding the
complex features of the system and to the design of a modelling rationale.
The modelling approach is treated in the second part of the paper by showing
both how the virus propagates into infected individuals, successfully and not
successfully recovered, and also the spatial patterns, which are subsequently
studied by kinetic and lattice models. The third part reports the contribution
of research in the fields of virology, epidemiology, immune competition, and
economy focused also on social behaviours. Finally, a critical analysis is
proposed looking ahead to research perspectives.

Key words: COVID-19, living systems, immune competition, complexity,
multiscale problems, spatial patterns, networks
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1 Motivations and plan of the essay
The onset of the SARS–CoV–2 virus responsible for the initial COVID-19 outbreak
and the subsequent pandemic, has brought to almost all countries across the globe
huge problems affecting health, safety/security, economics, and practically all
expressions of collective behaviour in our societies. Data are constantly updated
and presented at various dedicated websites [44, 69, 79, 121]. A significant
percentage of societies and governments believed this to be a so-called black
swan [123] event for our society, including a number of scientists. However, this
event is definitely not a black swan, although it has already had a great impact all
over the world. Indeed, this event should have been predictable (and indeed was
predicted by a few [8, 63]) but many of our societies appear to be unprepared to
tackle this problem.

If we look at COVID-19 from the view point of applied mathematicians, some
preliminary remarks concerning how best to approach modelling such a pandemic,
which include an interdisciplinary vision and the role of mathematical models in
science and our society, are as follows:

• The modelling approach should go far beyond deterministic population dy-
namics, since individual reactions to the infection and pandemic events are
heterogeneously distributed throughout the population. Spatial dynamics
and interactions are an important feature to be included in the modelling
approach, since the dynamics are generated by nonlocal interactions and
transportation devices.

• The modelling ought to be developed within a multiscale vision, as the
dynamics of individuals depend on the dynamics at smaller scales inside
each individual by the competition between virus particles and the immune
system. It is clear that applied mathematicians cannot tackle the modelling
problem by a stand-alone approach – an interdisciplinary vision is necessary
through mutually enriching and beneficial interactions with scientists in
other fields including virology, epidemiology, immunology and biology in
general.

• The approach adopted and described in this paper looks firstly for a model
local-in-space accounting for the infection dynamics and, subsequently for
the competition inside each individual, between the proliferating virus and
the immune-system specific to the individual. Subsequently the approach
focuses on collective behaviour. Finally, the mathematical description of
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spatial propagation is studied, since we are aware that this is not a problem
of diffusion, but that of directed propagation with finite speed (which can and
should be related to endogenous communication networks where individuals
move).

• The scope of such a research project should not be confined only to “bio-
logical and medical sciences”, but also be addressed to wider aspects of and
other communities in our society. This requirement is motivated not only
by the strong impact that a virus pandemic can have on a society, but also
to the need that science should look forward with predictive aims. On their
own, mathematical models do not and cannot solve the problems of biology,
medicine and economics. However, once refined and informed by empirical
data, they can produce insightful provisional simulations which can even
uncover dynamics which were not previously observed (cf. emergent be-
haviour). Hence mathematical models can and should also be viewed as a
tool to generate dialogue and wider communication between the hard and
applied sciences. This dialogue can in turn lead to a perspective on and
insight into possible future events.

• Since the modelling approach aims and intends to capture the complex fea-
tures of living systems, this effort often requires new mathematical methods
and techniques, even new mathematical theories. This requirement was al-
ready posed by Hartwell [70], accounting for multiscale problems as had
already appeared in the celebrated essay by Schrödinger [118], but the gen-
eral premise and vision goes back over a century to Hilbert [72, 73, 74].
Indeed, the words of Hilbert opening his lecture “Mathematische Probleme”
delivered before the International Congress of Mathematicians in Paris,
1900, are worth recalling here since they are prophetically apposite:

Who of us would not be glad to lift the veil behind which the future
lies hidden; to cast a glance at the next advances of our science
and at the secrets of its development during future centuries?
What particular goals will there be toward which the leading
mathematical spirits of coming generations will strive? What new
methods and new facts in the wide and rich field of mathematical
thought will the new centuries disclose?

As noted above, the contribution of mathematics to model complex natural
phenomena can be effective only if sufficiently well integrated with the work,
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knowledge and insight of scientists active in virology, epidemiology, immunology
and biology. Once integrated in this fruitful interdisciplinary manner, the best
mathematical models (e.g. through predictive computational simulations) are
capable of presenting a broad vision of a range of possible system outcomes which
can be used towards both therapeutic actions and, in the case of a pandemic,
confinement strategies to control the dynamics of an infection. The recent events
related to COVID-19 have shown that the pandemic has exerted a huge impact
on societies concerning both their social behaviour and economic strategies. This
paper accounts for some specific, but highly relevant, features of the pandemic
and aims to construct a framework which can hopefully contribute to developing
future strategies by which governments can fight to reduce and possibly control
the impact of such an event. Bearing in mind all of the above, the contents of our
paper, which can be viewed in three parts, can be presented as follows.

Part 1 is devoted to understanding the complex features of the system under
consideration whose biological dynamics are described in Section 2. A first step
towards the design of a modelling rationale is proposed in the same section to
contribute to defining the general mathematical framework deemed to provide the
conceptual basis for the derivation of the models.

Part 2 focuses on modelling topics. Firstly the case of spatial homogeneity is
studied in Section 3, where a model is derived accounting for the heterogeneity of
the immune defence of individuals and describing how the virus propagates into
infected individuals. Simulations enlighten the main features of the dynamics as
well as the role of possible therapeutic actions. Subsequently, the more realistic
case of the spatial development of the disease is developed in Section 4, accounting
for recent studies on the modelling of crowd dynamics [2, 9]. Different features
of spatial dynamics and spread are studied to show how the infection propagates
through space.

Part 3 reports on the contribution of research in the fields of virology (in
Section 4), immune competition (in Section 5), and economics, focused also on
social behaviour (in Section 6). These sections propose a critical analysis which
accounts for the modelling achievements and indicates key modelling targets.
Section 7 looks ahead to research perspectives suitable for deeper consideration of
the various initiatives proposed in the preceding sections. This section provides
an answer to the general key objective described below by tracing the guidelines
of a forward look to a future vision of the systems approach adopted here.

Summary statement:

The key target of this paper consists in designing a multiscale mod-
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elling approach and framework suitable for designing and producing
a simulation device with the capacity to explore crucial aspects of the
spread of a pandemic. More specifically, this should be capable of ex-
ploring the different scenarios corresponding to possible strategies to
control a virus pandemic, so that crisis managers can select the most
appropriate or most effective choices towards effective control within
the shortest timeframe. At a later stage, once reliable data are avail-
able, these data will be properly selected and stored in a database,
and then the simulation device can become predictive, while the model
can be further refined and developed to include additional details of
the virus such as mutations, selection and evolution.

2 Towards a mathematical framework
This section provides a general introduction to the technical and formal contents of
our paper developed in Sections 3–7. The presentation is in three parts: first, a brief
historical introduction to epidemiology is delivered, subsequently a concise report
on the phenomenology of the biological system under consideration is presented,
and finally a rationale towards the modelling approach is brought to the reader’s
attention in view of the mathematical formalization proposed in Section 3.

Firstly we provide a concise introduction to the contribution of mathematics
to epidemics, subsequently an outlook to the phenomenological behaviour of the
system is presented enlightening some heterogeneity and multiscale features of the
dynamics, lastly we focus on the key features of the rationale towards themodelling
approach developed in the next sections.

The mathematical modelling of infectious diseases goes back over 250 years
to Daniel Bernoulli who developed a model to predict the number of deaths due to
smallpox and the effect on mortality of inoculation [23]. This problem was also
considered by D’Alembert who produced an alternative model to Bernoulli [48],
in fact a critique of Bernoulli’s approach which led to a heated debate between
the two [55]. Our modern day subject of “theoretical epidemiology” goes back
almost 100 years to the seminal paper of Kermack and McKendrick in 1927 [84].
Kermack and McKendrick proposed and developed the first “compartmental”
model of disease dynamics and disease spread by considering a population of
individuals sub-divided into three separate classes - susceptible, infectious and
recovered - with the transmission of the disease/infection being dependent upon
the number of interactions between individuals and the underlying rate of infection.
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This is the first SIR model of disease transmission. In formulating their model in
this way, the so-called reproduction number or R0 was defined and introduced.

In themid-1970s, interest in the subjectwas rekindled [10]with both theoretical
developments of the models and systems [54] and prescient applications to real
epidemic outbreaks such as the cholera epidemic in Bari, Italy, in the early 1970s
by Capasso [33, 34]. Modelling the spatial spread of epidemics, although not
much focussed on in general (using reaction-diffusion equations and the theory of
travelling waves [35]), has been applied to the spread of rabies [81] which led to an
estimate of the speed of the invasive wave of infection. Applied to historical data
from Europe, this approach has also been used to estimate the spread of the black
death/bubonic plague through Europe in the 14th century [104]. Subsequent work
by, e.g. Diekmann and others, has formalised much of the theory behind epidemic
models and introduced structured population models [52, 53].

In the 1980s and into the 1990s, with the onset of AIDS/HIV,work byAnderson
& May and others [4, 5, 6, 101, 105, 106] highlighted the role of mathematical
modelling in predicting possible outcomes of disease spread in large populations.
Building on this, ground-breaking work by Perelson and others [111, 112, 113]
on viral load, virion clearance rate and the role of the immune system/response
helped lead to breakthroughs in treatment for AIDS/HIV.

Applications of predictive and insightful mathematical modelling to other dis-
eases include the work of Grenfell and co-workers which has helped to quantify the
dynamics ofmeasles epidemics, in a range of settings and the impact of vaccination
strategies against measles and other childhood infections [27, 28, 66, 60]. Prior to
the current COVID pandemic, other applications of epidemiological modelling to
disease outbreaks over the past 30 years or so have included: bovine spongiform
encephalopathy (BSE), Foot-and-Mouth disease (FMD), SARS, MERS, and the
flu pandemic among others [71].

The virus, Corona-virus disease 2019 (COVID-19) is caused by the infection
of the SARS–CoV–2 virus, a corona-virus. The so called Corona-viruses are part
of a large family of viruses that cause illness ranging from the common cold to
more severe diseases including Severe Acute Respiratory Syndrome (SARS) and
COVID-19. The SARS–CoV–2 virion is made up of four structural proteins known
as Spike, Envelope, Membrane and Nucleocapsid.

The World Health Organization (WHO) upgraded the state of SARS–CoV–2
infection from epidemic to pandemic in March 2020. Apparently, the epidemic
first started in China, followed by South Korea and then Italy. Progressively many
(almost all) countries around the world have have been invaded and have reacted by
implementing different strategies including the imposition ofmobility and physical
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locks-downs and border limitations. The behaviour of all countries to counteract
the pandemic appears to be quite heterogeneous, as it is the national organization
which cares about infected patients. This heterogeneity is also confirmed by the
diffusion of the disease inside each country and the distribution of the level of the
pathology.

As we shall see in the next sections, accounting for heterogeneity of the pop-
ulations is not an essential requirement for the modelling approach, but it can
contribute to a deeper understanding towards the contribution that economics and
sociology can provide to all decision makers, from crisis managers all the way up
to policy makers.

Although the knowledge of this topic is still evolving, some specific features
can be extracted, in view of a deeper analysis to be developed in sections 4–6,
with the aim of developing some reasonings on the modelling rationale towards
the mathematical formalization developed firstly in Section 3 and subsequently
also in Section 7. The amount of scientific literature which has appeared in the
last few months after the appearance of Covid-19 is impressive and, in some cases,
not easy to follow due to a contrast of view points which can be related to the
non-exhaustive knowledge in the field.

Therefore, we need to issue a warning to the reader that we do not claim
completeness, while we refer to the report [37], which is bimonthly updated and
it is available at the website of the Italian Lincei Academy. The description is
delivered in the following, where some of the Items have been extracted from [37].

• Virus transmission: SARS–CoV–2 is mainly transmitted through the respi-
ratory route 10-12 via respiratory droplets, up to 1 millimetre in diameter,
that an infected person expels when she/he coughs or sneezes. As the virus
multiplies, an infected person may shed copious amounts of it.

• Binding and cell attack: The large Spike protein forms a sort of crown on
the surface of the viral particles and acts as an anchor allowing the virus to
bind to the Angiotensin-Converting Enzyme 2 (ACE2) receptors on the host
cell. After binding, the host cell transmembrane proteases (TMPRLRSS2
and Furin) cut the Spike proteins, allowing the virus surface to approach the
cell membrane, fuse with it and the viral RNA enter the cell.

• Virus proliferation: Then, the virus hijacks the cell machinery and the cell
dies releasing millions of new viruses thus generating a virus infection.
COVID-19 starts with the arrival of SARS–CoV–2 virions to the respiratory
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mucosal surfaces of the nose and throat that express high levels of ACE-2
receptors on the surface .

• Immune system actions: When the virus manages to overcome the barrier
of the mechanisms and the mucus secreted by goblet cells from a first
effective reaction, a rapid release of danger signals activates the reaction of
the host’s innate immunity. Corona viruses are successful at suppressing
various mechanisms in an immune response, but a protective immunity can
be however developed.

This brief description induces a concept of the amount of infection roughly
related to the quantity of initial virus corresponding to the initial infection. There-
fore, it is wise to account for the heterogeneous level of infections and of the
heterogeneous ability of each individual to express his/her immune defence.

In addition, the modelling approach should include some ability to predict
the trends of infected individuals towards full recovery and of those who do not
succeed in surviving. The overall modelling should also be deemed to support the
strategic choice of hospitalization of infected individuals based on the estimate of
the progression of the pathology.

Subsequently, the focus moves to the contagion in space, where it occurs by
contact thus creating a population of infected individuals who move in space and
propagate the epidemic in a globally connected world. The role of space can be
studied by treating the following sequential steps of the modelling approach:

1. Dynamics in the case of spatial homogeneity, where the virus is transmitted
from infected to healthy individuals by short-range interactions. In general
contagion depends on the infectivity features of each individual and on the
distances they maintain homogeneously in a crowd, namely on the local
density.

2. Contagion in a crowd, where individuals move in a spatial domain, namely
with the loss of space homogeneity. Contagion depends on the local dis-
tance between individuals which depends on time and space. Contagion
probability is somehow related to local density and infectivity.

3. Spatial dynamics in exogenous networks, where individuals move by trans-
portation across nodes of a physical network, while the dynamics within
each node follows the dynamics outlined in the preceding Items.
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The various reasonings given above indicate that we are studying a complex
system which presents multiscale features, where the microscopic scale, in short
micro-scale, corresponds to virus particles and immune cells, which induces the
dynamics at the higher scale of individuals who carry an infection (meso-scale),
while collective behaviours are observed at the macro-scale of all individuals. As
mentioned previously, an ability to develop an immune defence is heterogeneously
distributed over the whole population.

Heterogeneity and multiscale features address the modelling approach to the
so-called kinetic theory of active particles [18] which has already been applied
to various branches of the so-called behavioural sciences [12, 94]. For instance,
the immune competition [22], collective learning [30, 31], and the dynamics of
crowds and swarms [2, 9], where understanding the dynamics of the collective
behaviour leads to a deeper understanding of the contagion dynamics.

The key features of the aforementioned mathematical approach, presented as a
mathematical theory in [18], can be summarized in the following sequence:

1. Subdivision of the overall system into functional subsystems, in short FSs.

2. Representation of the state of each FS by probability distributions over the
micro-state of interacting entities.

3. Deriving a general mathematical framework deemed capable of capturing
the complex features of living systems constituted by very many interacting
entities.

4. Modelling interactions and deriving specific models by inserting these mod-
els into the said mathematical framework.

5. Simulation of the dynamics at the micro-scale by computing macroscopic
quantities by weighted moments of the probability distribution functions
mentioned in Item 2.

An important step of the overall approach is themodelling of interactionswhich
needs amultidisciplinary vision as it links knowledge in biology to advancedmath-
ematical methods as interactions are, generally, nonlinearly additive, nonlocal, and
stochastic. This rationale, once transferred into a mathematical framework, goes
well beyond classical SIR models. In addition, the problem is multiscale as each
individual is a carrier of an internal competition, at the micro-scale, between the
virus and the host immune system.
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Figure 1: A crowd with aggregation of multiple groups.

Indeed, it is a broad vision although we acknowledge that recent developments,
for instance [97] have effectively contributed to a deeper understanding of the
COVID-19 pandemic.

3 Multiscalemodelling fromparticles to populations
We consider a population of a large number of individuals, where a small fraction
is infected and transfers the virus to healthy individuals by short range interactions.
In general, contagion depends on the frequency of contacts, on the level of the
infection within each individual, and on the level of physical protection used by
individuals aware of the risk of contagion. The frequency can be related to the dis-
tance, generally called social distance, while the dynamics within each individual
includes a competition between the virus and the immune system. Figure 1 shows
how, in a crowd, the social distance can differ due to local aggregations. Individu-
als move according to certain walking strategies [20], while a special case (useful
nonetheless to model the dynamics of contagion) refers to a crowd homogeneously
distributed in space.

This section is devoted to developing a modelling approach suitable to describe
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the dynamics over time and space of the whole population which includes healthy,
infected, and recovered individuals. The model is also required to describe the
growing number of those who could not recover and therefore die. The study is
developed along some sequential steps devoted to the following topics: Modelling
contagion under the assumption of spatial homogeneity; Simulations of the conta-
gion dynamics linked to individual competition against the undesired host virus;
Modelling the contagion dynamics in complex spatial environments. These topics
are treated in the next subsections, while the last subsection is devoted to a critical
analysis and further developments of the modelling strategy.

3.1 Modelling contagion, progression and recovery under the
assumption of spatial homogeneity

We consider a population consisting of N0 individuals homogeneously distributed
in space. A small number of them ε N0 is initially infected, while (1 − ε) N0 is
considered healthy. The general framework supporting the modelling approach is
defined by a selection of key features somehow related to the general description
given in Section 2 with the additional aid of the technical report [37]. We suppose
thatmodelling contagion dynamics, followed by the competition for survivalwithin
each individual, can be developed according to the following rationale:

1. Individuals are viewed as active particles, in short a-particles, namely par-
ticles which are carriers of an internal state, called activity. The level of
infection of each a-particle can progress in time due to a prevalence of the
virus aggressiveness over the immune defence or can regress due to the suc-
cessful actions of the immune defence. The ability to express an individual
immune defence is heterogeneously distributed throughout the population.

2. Contagion depends on the level of the infection as well as on the physical
distance between individuals which is a constant parameter in the case of
spatial homogeneity.

3. Dynamics within each individual transmission depends on the competition
between a proliferative virus and the immune system. Hence, the dynamics
involve individuals which are carriers of an internal dynamics.

In general, medical actions either to weaken the virus or to activate the immune
system can contribute to drive the competition towards full recovery. On the other
hand, the model might consider both the dynamics induced by isolation and death
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of individuals whenever the action of the virus has a gain over the immune defence.
Additional features of the modelling approach are:

– The overall population is subdivided into four sub-populations labeled by the
subscripts i = 1, 2, 3, 4. The abbreviation i-FS is used to denote the i-th population
viewed as a functional subsystem.

– The micro-state of a-particles includes two variables u ∈ [0, 1] and w ∈ [0, 1]
corresponding, respectively, to the progression of virus invasion and to the level
of activation of the immune defence. In this sense, u = 0 represents the absence
of the viral infection, while u > 0 characterizes the presence of the disease, where
increasing values of u towards 1 correspond to more aggressive states. Similarly,
w = 0 and w = 1 correspond, respectively, to the lowest and highest immune
system activation. If discrete variables are used one has

u = {u1 = 0, . . . , u j =
j − 1
m − 1

, . . . , um = 1},

and
w = {w1 = 0, . . . ,wk =

k − 1
n − 1

, . . . ,wn = 1},

where u1 = 0 corresponds to the healthy level and w1 = 0 to the lack of immune
defence.

The representation of each population is given by a probability distribution
over the microscopic state, where the use of discrete variables is suggested by
the difficulty to achieve a detailed measure of their continuous properties, while
finite sets allow one to identify or cluster groups of a-particles. The following
subdivision into FSs and representation is proposed:

• i = 1: Corresponds to healthy individuals with distribution f 1,k
1 (t, u1,wk),

where t is the time belonging to the interval [0,T].

• i = 2: Corresponds to infected individuals with distribution f j,k
2 (t, u j,wk),

with 1 < j < m.

• i = 3: Corresponds to individuals recovered from the infection with distri-
bution f3(t), namely infected individuals that succeed in reaching back to
the state j = 1. Here, the dependence on wk is not any longer relevant with
respect to the specific dynamics under consideration.

• i = 4: f4(t) is the number of individuals of the infected population who
do not succeed to recover, that are infected individuals who reach the state
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j = m. Here again, the dependence on wk is no longer relevant with respect
to the specific dynamics under consideration.

Therefore, an individual with micro-state (u j,wk) can be either healthy (i = 1)
if j = 1, or infected (i = 2) if 2 ≤ j < m. If an individual from 2-FS reaches the
states (u1,wk) or (um,wk), then he/she recovers (i = 3) or dies (i = 4), respectively.

The time-dynamics of the four FSs can be obtained by using the general
mathematical structures of the kinetic theory of active particles, see Chapter 5
in [18], and subsequently by inserting into these structures appropriate models of
interactions. However, some further developments of the theory are necessary to
account for the multiscale features of the class of systems under consideration.
Therefore, a general structure is reported as it provides the conceptual basis for
these developments.

d
dt

f r
i j = Gr

i j(f) − Lr
i j(f)

=

m∑
s=1

n∑
h,k,p,q=1

η
pq
hk (r, s)(f)A

pq
hk (hk → i j)(f) f r

hk f s
pq

− f r
i j

m∑
s=1

n∑
p,q=1

η
pq
i j (f) f s

pq, (1)

where (1) refers to the dynamics of a large number of active particles whose state
is defined by the probability f r

i j to find an active particle from the r functional
subsystem with micro-state i j. The subscripts h, k and p, q denote the micro-states
corresponding to the r, s FSs which by interactions lead to the dynamics of f r .
In addition, ηpq

hk , η
pq
i j , denote the interaction rates, and Apq

hk the transition rate into
the micro-state i, j of the r-FS. The time dynamics are then ruled by a gain term
of particles which at time t gain the state (i, j) and a loss term related to particles
which lose such a state.

The modelling of interactions can be developed according to the following
assumptions:

1. i = 1: Active particles belonging to 1-FS interact with a-particles from
2-FS and can become, with some probability, infected. The rate of infection
depends on the physical interaction rate η0, supposed to be constant, and to
the level of progression u j of the infected individuals as the probability of
infection grows with u j .
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2. i = 1, 2: The interaction rate depends on the social distance. Interactions do
not modify the levels of the immune defence, while particles which move
from 1-FS to 2-FS take the value u2 and start their competition to survive
the attack from the immune system. The model allows the study of different
scenarios corresponding to various possible situations.

3. i = 2: The dynamics within 2-FS are induced by the competition between
progressing particles of the virus and the immune defence. Viral particles
progress (proliferate) thanks to foraging of the surrounding tissues, while
the immune defence counteracts the progression by inducing a regression.
Interactions occur with a constant interaction rate µ0 , η0. In addition, the
dynamics should account for the inflow from 1-FS and outflows from 2-FS
to 3-FS and 4-FS.

4. i = 2, 3, 4: A-particles from 2-FS move to 3-FS if the immune defence
succeeds to obtain a regression down to u1. A-particles from 2-FS move to
4-FS if the immune defence does not succeed to obtain a regression and the
virus progression reaches the highest value um. A-particles recovered from
the infection are not subject to a new infection.

The dynamics described in the Items above are shown in Figure 2, while
Figure 3 depicts the progression and competition dynamics within each individual,
corresponding to the block i = 2 which is red as it specifically refers to the low
scale of cells and virus particles, while the other blocks which are blue, correspond
to individuals.

The technical difference, with respect to (1), is that interactions involving
subsystems 1, 3 and 4 only refer to the scale of individuals, namely a-particles are
human beings, while interactions within 2-FS refer to micro-entities, namely virus
particles and immune cells, and interactions between 2-FS and the other FS are
mixed as they involve two scales. In addition, if birth and death rates due to other
causes are neglected, then the sum of the number size of the four populations is
equal to N0 for every time t.

The model, which is presented in the following, takes into account only inter-
actions which have an influence on the dynamics of the overall system, namely
transitions from 1-FS to 2-FS, within 2-FS, and transitions from 2-FS into 3-FS
or 4-FS. Then, simulations should put in evidence different scenarios depending
on different distributions corresponding to the levels of the defence ability of the
immune system. Possible developments of the model are discussed in the last
subsection to account for additional features which are not included in this model.
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Figure 2: Transfer diagram of the model. Boxes represent functional subsystems
and arrows indicate transition of individuals.
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Figure 3: Dynamics within infected population.
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Bearing inmind all the above, let us consider, in sequence, the dynamics related
to each FS.

Infection dynamics: A healthy individual from 1-FS with state u1 interacts, with
rate η0, with an infected individual from 2-FS with state u j, j > 1, and becomes
infected with a probability which depends on a parameter α∗ and on the level
of infection of the individual from 2-FS. The dynamics refers to f 1,k

1 (t) and it is
governed only by the loss term:

∂t f 1,k
1 (t) = −Lk

1 (t) = −
n∑

s=1

m−1∑
j=2

α u j f 1,k
1 (t) f j,s

2 (t), (2)

for k = 1, . . . , n and α = η0 α
∗. The interaction rate η0 depends on the local

density of individuals. It grows with increasing value of the density thus reaching
the maximal value in the case of maximal packing density (a technical value is
6-7 individuals per square metre). The use of the subscript 0 refers to the spatially
homogeneous case, where the density is the same throughout the spatial domain.
Steady cases, but with different crowding levels, as shown in Figure 1, can be
taken into account by a space-dependent interaction rate so that α = α(x), where
x denotes the position. Further developments are discussed in the last subsection.

Dynamics of infected individuals: Each infected individual is the carrier of a
struggle between virus particles and immune system. The virus takes advantage
from the foraging of surrounding tissues and increases its micro-state from each
j-level to the higher j + 1-level depending on a parameter β∗ and on the j-th level.
The immune system acts to decrease the j-level to the lower j − 1-level depending
on a parameter γ∗ and on the k-th level. Individuals, whose virus progression levels
reach the values u1 and um move, respectively, to 3-FS and 4-FS. The dynamics
refers to f j,k

2 (t) and it is governed by both gain and loss terms:

∂t f j,k
2 (t) = G j,k

2 (t) − L j,k
2 (t), (3)

Detailed calculations yield:

G j,k
2 (t) = δ2 j Lk

1 (t) + β u j−1 f j−1,k
2 (t) + γ wk f j+1,k

2 (t), (4)

for j = 2, . . . ,m − 1 and k = 1, . . . , n, β = µ0 β
∗, γ = µ0 γ

∗, δ is the Kronecker
delta function, and where the three terms correspond, respectively, to inflow from
1-FS, progression of the virus and regression of the virus due to the immune action.
In addition

L j,k
2 (t) = β u j f j,k

2 (t) + γ wk f j,k
2 (t) (5)
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for j = 2, . . . ,m − 1 and k = 1, . . . , n, while the two terms correspond to the
outflow of recovered persons who move into 3-FS and dead individuals who move
into 4-FS.

Dynamics of recovered individuals: The dynamics are caused by the inflow from
2-FS into 3-FS:

∂t f3(t) = γ
n∑

k=1
wk f 2,k

2 (t). (6)

Dynamics of dead individuals: The dynamics are caused by the inflow from 2-FS
into 4-FS:

∂t f4(t) = β um−1

n∑
k=1

f m−1,k
2 (t). (7)

Collecting all equations of the differential system yields

∂t f 1,k
1 (t) = −α

n∑
s=1

m−1∑
j=2

u j f 1,k
1 (t) f j,s

2 (t),

∂t f j,k
2 (t) = α

n∑
s=1

m−1∑
j=2

u j f 1,k
1 (t) f j,s

2 (t) δ2 j + βu j−1 f j−1,k
2 (t)

+ γ wk f j+1,k
2 (t) − β u j f j,k

2 (t) − γ wk f j,k
2 (t),

∂t f3(t) = γ
n∑

k=1
wk f 2,k

2 (t),

∂t f4(t) = β um−1

n∑
k=1

f m−1,k
2 (t),

(8)

where for (8)1 one has k = 1, . . . , n, while for (8)2 one has j = 2, . . . ,m − 1 and
k = 1, . . . , n.

It can be rapidly verified that model (8) is a particular case of (1) corresponding
to specific models of interactions. It is the same at both scales and accounts for
heterogeneity at each scale.

3.2 Simulations of selected case studies
A mathematical model has been proposed in the preceding subsection, with the
rationale behind themodel being proposed and described in Subsection 3.1, and the
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technical details given in Subsection 3.2. We do not naively claim that the complex
biological dynamics have been exhaustively captured by our model, but we remark
that it includes some important features such as the ability of the immune system
which is heterogeneously distributed throughout the population.

Important features still need to be considered, for instance, modelling the spatial
dynamics, typical of crowds, which introduce a dynamically varying heterogeneity
in the contagion dynamics. Therefore, a more detailed study of the modelling
developments is postponed firstly to the next subsection mainly to account for the
role of spatial dynamics and in Section 7 to account for the hints of Sections 4,
5, and 6 devoted to virology, immune competition and economics. Some sample
simulations are presented in this subsection simply to enlighten the role of the
parameters of the model.

Let us study the behaviour of the system corresponding to different choices
of the parameters. We consider, at time t = 0, only one infected individual in
a population of 10 million people (ε = 10−7). Simulations are developed for
m = n = 5, β = 0.1 and γ = 0.2, while three values of α = 0.4, 0.3, 0.25, are
considered.

As expected, simulations show that the larger α is, the greater is the increase
in the number of infected people, while reducing interactions reduces contagion,
see Figures 4-6.
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Figure 4: α = 0.4. Left: Total number of active cases (blue), active cases requiring
hospitalization (red) and the number of available beds (black). Right: Cumulative
infected population (red), recovered (blue) and dead (black) vs time.

An additional key factor considered in the simulations is the pressure on
the local health-care system. The red line representing active cases requiring
ICU admission can be compared with the black line representing the number of
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Figure 5: α = 0.3. Left: Total number of active cases (blue), active cases requiring
hospitalization (red) and the number of available beds (black). Right: Cumulative
infected population (red), recovered (blue) and dead (black) vs time.
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Figure 6: α = 0.25. Left: Total number of active cases (blue), active cases
requiring hospitalization (red) and the number of available beds (black). Right:
Cumulative infected population (red), recovered (blue) and dead (black) vs time.

available ICU beds. For instance, recent data shows that, in Italy, about 12% of
SARS–CoV–2 positive cases required ICU admission and that, if in practice about
1 per thousand of the patients are infected at the same time, then the total ICU
capacity of the country would be saturated, as reported in [37].

A natural question can be posed at this stage, namely how does the epidemic
peak depend on model parameters? Moreover, we argue that the epidemic can
exist in a population in some equilibrium state in which the rate of newly infected
people is compensated by those who recover. Figure 7 shows the magnitude of the
epidemic peak in the population (namely the maximum number of people who are
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infected simultaneously) and the time at which this peak occurs, as a function of α.
On the left side of Figure 7, we see that the magnitude of the peak is an increasing
function of α. It is shown that the peak could even reach a level of almost the 30%
of the whole population when α is close to 1.

On the other hand, if α is small enough, then an outbreak of the epidemic is
prevented. Asmentioned, these dynamics correspond to equal rates of infected and
recovered. Additionally, the right hand plot of Figure 7 shows that lower values
of α effectively delay the peak, and social distancing can thus be considered as a
strategy to prepare and equip the health system, if necessary. A deeper analysis of
this feature is further treated in Section 7.
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Figure 7: Left: Proportion of people infected at the same time when the peak of
infection is reached as a function of α. Right: Time at which this peak occurs as
function of α

Finally, let us study the effect of implementing social distancing at a given time.
Consider for instance the dynamics shown in Figure 4, where α = 0.4 for the whole
time interval. Figures 8 and 9 show two different scenarios of implementation of
social distancing. Notice that it contributes to the flattening of the infection peaks
but, if not managed properly, it could be useless (for instance Figure 9 shows that
a premature lifting of social distancing can actually lead to the infection exceeding
the capacity of the health system.)

Notice that the total population can be calculated as follows:

N(t) =
n∑

k=1

©­« f 1,k
1 (t) +

m−1∑
j=2

f j,k
2 (t)

ª®¬ + f3(t) + f4(t),

which keeps a constant value equal to N0 due to the conservative nature of the
transitions.
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Figure 8: α = 0.4 for t < 300, then reduced to α = 0.25 at t = 300, and set
back to the “normal/initial” state at t = 1200. Left: Total number of active cases.
Right: Estimated number of patients requiring ICU admission in relation to system
capacity.
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Figure 9: α = 0.4 for t < 300, then reduced to α = 0.25 at t = 300, and set
back to the “normal/initial” state at t = 900. Left: Total number of active cases.
Right: Estimated number of patients requiring ICU admission in relation to system
capacity.

The large number of dead people (for instance almost 10% of the population,
see the black line in Figure 4 right-hand plot) should not be surprising as this
specificmodel does not include the effects of hospitalization and subsequent health
care on individuals (i.e. the prospect of a recovery through treatment). Therefore
the simulations refer to a “disaster situation”, where infected individuals are not
isolated. Hospitalization contributes not only to the care of infected people, but
also to reducing the spread of the infection.
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Model (8) can be technically modified to include the effects of hospitalization
on the dynamics, by which further developments of the infection are reduced.
These specific dynamics can be modelled simply by adding a fifth population,
viewed as a FS, of hospitalized individuals. The dynamics of this population
can be modelled by extracting a fraction of infected individuals from 2-FS in
different ways: for instance, hospitalizing individuals who present a high level of
the infection, corresponding to high values of j, or simply a fraction of the infected
independently of the said level.

Therefore, it is interesting to showhowhospitalization influences the contagion.
A simple model can be developed by supposing that individuals who show some
clinical evidence/symptoms larger than a critical state, say u ≥ uc are hospitalized.
These patients undergo clinical treatments, which are not studied in this section,
but our model shows how the contagion evolves accounting for dynamics where
hospitalized individuals do not contribute to infecting healthy people (of course
besides those within each hospital).

Let φ = φ(t) be the population of hospitalized individuals. Then, the model
can be given by a technical modification of Eq. (8) as follows:

∂t f 1,k
1 (t) = −α

n∑
s=1

m−1∑
j=2

u j f 1,k
1 (t) f j,s

2 (t),

∂t f j,k
2 (t) = α

n∑
s=1

m−1∑
j=2

u j f 1,k
1 (t) f j,s

2 (t) δ2 j + βu j−1 f j−1,k
2 (t)

+ γ wk f j+1,k
2 (t) − β u j f j,k

2 (t) − γ wk f j,k
2 (t),

∂t f3(t) = γ
n∑

k=1
wk f 2,k

2 (t),

∂tφ(t) = β
m∑

j=c

u j

n∑
k=1

f j,k
2 (t),

(9)

where the second equation is now valid for j = 2, . . . , c − 1. Individuals reaching
the state uc are immediately removed from 2-FS and contribute as a gain in the last
equation.

Figure 10 shows how the healthy and infected population depend on the critical
state uc at which people are isolated.
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Figure 10: Healthy and cumulative infected populations for different values of uc,
namely c = 5 (yellow), c = 4 (red), c = 3 (blue), by simulations with m = 5.

3.3 Reasonings on spatial dynamics and the contagion
Some reasonings on the modelling of the dynamics of contagion propagation
through space are developed in this subsection. Spatial homogeneity in and of
itself already provides useful information and insight. However, it is only an
approximation of the physical reality of how the infection is transmitted spatially
and additional work is needed to study more fully the dynamics in space and the
related pattern formation that is created over the spatial domain. This is not an easy
task, and it should focus not only on the dynamics in open areas, but also consider
movement in complex venues across interconnected areas and networks. In both
cases, the venue might include restricted aggregation areas, namely zones of high
contagion diffusion. This study poses challenging problems which require new
ideas but at the same time opens interesting research perspectives. This subsection
presents some of these perspective ideas towards possible research programswhich
should also include computational simulations.

The literature in the field of mathematical biology, specifically the dynamics
of multicellular systems, already provides some perspective ideas which can con-
tribute to a modelling strategy for the complex system under consideration. As an
example, an analytic and computational study is proposed in [21] for the transport
of an epidemic population model by a reaction-diffusion-chemotaxis system. A
study of the modelling of the movement of invasive cancer cells through the ex-
tracellular matrix has been developed in [120] focusing on the multiscale features
of the dynamics. The second part of [120] presents a model of cell dynamics
at the micro-scale for the cancer cell movement through the extracellular matrix
accounting for the different way by which cells can move, namely mesenchymal
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and ameboid. The authors specifically apply this technique to the phenomenon of
cancer invasion, but some concepts can contribute also to a deeper understanding
of the problems studied in our paper. An additional problem, which cannot be
neglected, is the derivation of models at the macro-scale from the underlying de-
scription at the micro-scale by asymptotic methods [16, 29] somehow inspired by
Hilbert’s sixth problem [74].

A multiscale vision requires that the approach to modelling spatial dynamics
should take into account both the literature in the field of biology to understand
how cells and viruses move over and through human tissues, and of the literature
on crowd dynamics to understand how individuals move in venues and across
territory. This section focuses on some selected topics and provides, for each
of them, some perspective ideas to develop a modelling strategy to be further
extended in an appropriate research program. Firstly, we focus on the contagion
dynamics in crowds corresponding to different levels of awareness of the risk of
contagion, and subsequently, the pattern formation of infected areas in a hetero-
geneous territory/domain are studied accounting also for the role of transportation
networks.

• Contagion dynamics in crowds: Consider a crowd moving in an open domain
where the distance between individuals varies in space and time. A small number
individuals in the crowd are initially infected, and our target is to study the dynamics
of infection.

Applications of kinetic theory methods to crowd dynamics indicates that a key
modelling approach has been introduced in [17] for a crowd supposed to move
along a finite number of discrete velocity directions. This model has been sub-
sequently developed in [19] to include continuous velocity dependence, the role
of emotional states, and a self-organization ability homogeneously shared by the
whole crowd. Derivation of a macroscopic equation from the underlying descrip-
tion at the micro-scale has already been developed in [15]. Further developments
and related computational schemes have been proposed in [86]. The spatial prop-
agation of emotional states by a consensus dynamics towards a commonly shared
status in one space dimension has been studied in [24, 137], where the term con-
tagion has been used to identify the dynamics by which individuals have a trend
to share a common emotional state. Recent research activity is specifically fo-
cused on congestion problems in crowds [96]. Congestion in urban areas might be
induced by traffic as shown in Figure 3.3.

Focusing on contagion problems, the dynamics in more than one spatial di-
mension has been studied in [20], where different types of social interactions have
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Figure 11: A crowd during city traffic.

been modelled. The coupling between a kinetic model of crowd dynamics [86]
and infection transmission has been proposed in the pioneering paper [87]. This
is an important difference with respect to models of evacuation dynamics where
the key social state is the level of stress which promotes aggregation of walkers
rather than rarefaction which is different from the awareness of the contagion that
induces walking strategies by which individuals try to maintain a safe distance
from each other.

The study of crowd dynamics related to evacuation problems has brought about
the derivation of quite sophisticated models which depict a detailed computation
of the local density and the mean speed of the flow. Indeed, both quantities are
important in the modelling approach as high densities correspond to lack of safety,
while high speed and optimal search of walking trajectories contributes to rapid
evacuation. However, the study of contagion dynamics needs to be developed in
a technically different framework. Hence we show how a modelling approach can
be developed to account for the technical modifications induced by the awareness
of the risk of contagion.

In more detail, let us consider the dynamics where individuals move in two
dimensional space with direction θ and speed v:

v = v(cos θ i + sin θ j) = v ν, (10)
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where i and j are orthogonal unit vectors of a plane frame, θ denotes the velocity
direction, and ν is a unit vector which defines the velocity direction. Individuals in
the crowd are viewed as a-particles whose microscopic state is defined by position
x, velocity v, and activity u.

Dimensionless quantities can be used by referring the components of x to some
spatial scale `, while the velocity modulus is divided by the limit velocityV` which
depends on the quality of the environment, V` is the speed which can be reached
by a fast pedestrian in free flow conditions, while ` is the diameter of the circular
area containing the domain where the crowd is initially localized.

The overall system is subdivided into n functional subsystems, while their
mesoscopic (kinetic) representation is obtained from the statistical distribution at
time t, over the microscopic state:

fi = fi(t, x, v, u) = fi(t, x, v, ν, u), (11)

where x ∈ R2, v ∈ [0, 1], θ ∈ [0, 2π), u ∈ [0, 1]. If fi is locally integrable
then fi(t, x, v, u) dx dv du is the (expected) infinitesimal number of pedestrians
of the i-th FS whose micro-state, at time t, is comprised in the elementary volume
[x, x+dx]×[v, v+dv]×[u, u+du] of the space of the micro-states, corresponding
to the variables space, velocity and activity.

We refer to [18] to propose the following structure which consists in an integro-
differential system suitable for describing the time dynamics of the distribution
functions fi:

(∂t + v · ∇x) fi(t, x, v, u) = Ji[ f ](t, x, v, u)

=

n∑
k=1

∫
D2
ηik[ f ](x, v∗, v∗, u∗, u∗) Aik[ f ](v∗ → v, u∗ → u|v∗, v∗, u∗, u∗)

× fi(t, x, v∗, u∗) fk(t, x, v∗, u∗) dv∗ dv∗ du∗ du∗

− fi(t, x, v, u)
n∑

k=1

∫
D
ηik[ f ](x, v, v∗, u, u∗;α) fk(t, x, v∗, u∗) dv∗ du∗, (12)

where the integration domain is D = Dv × Du, where Dv and Du correspond,
respectively, to the domains of v and u. In addition, the following quantities model
interactions:
ηhk[ f ](x, v∗, v∗, ν∗, ν∗, u∗, u∗), is the interaction rate modelling the frequency by
which a candidate (respectively test) h-particle in x develops contacts, in Ωs, with
a field k-particle.
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Ahk[ f ](ν∗ → ν, v∗ → v, u∗ → u|v∗, v∗, ν∗, ν∗, u∗, u∗) is the transition densitymod-
elling the probability density that a candidate h-particle in x with state {v∗, ν∗, u∗}
shifts into the state {v, ν, u} of the i-test particle due to the interaction with a field
k-particle in Ωs with state {v∗, ν∗, u∗}. Both η and A can depend on the local
density.

Interactions correspond to a decision process by which each a-particle modifies
its activity and decides on its mechanical dynamics depending on the micro-
state and distribution function of the neighbouring particles in its interaction
domain. This process modifies the velocity direction and speed. Three types of
a-particles are involved in the interactions. The test particle, the field particle, and
the candidate particle. Their distribution functions are, respectively fi(t, x, v, u),
fk(t, x, v∗, u∗), and fh(t, x, v∗, u∗). The test particle is representative, for each FS,
of the whole system, while the candidate particle can acquire, in probability, the
micro-state of the test particle after interaction with the field particles. The test
particle loses its state by interaction with the field particles.

The derivation of the mathematical models is obtained by inserting into (12)
models of interactions specialized to account for each specific physical situation
under consideration. The strategy expressed by individuals is that they first modify
the dynamics of the emotional state, then they select the walking direction and
finally, the walking speed.

The modelling approaches known in the literature, see [9] as a reference, sug-
gest that each individual interacting with others in his/her sensitivity domain first
selects the walking direction by a weighted choice from the following directions:
A trend towards the target θT , attraction towards the main stream ξ , and the search
of paths with less congested local density θV . In more detail, the selection depends
on the parameter u and is weighted by the local density ρ, where increasing values
of u correspond to a trend towards the stream ξ with respect to the trend towards
the target, while the local density increases the trend towards vacuum or empty
zones. Therefore, the model depend, for each FS, on the micro-state quantity u
which differs in each FS and on two local macro-scale quantities, namely ρ and ξ .

The selection is modelled by theoretical tools of stochastic game theory, where
the output of the interaction is govened by the local density and a parameter
modelling the level of individual stress in the crowd. In detail, increasing the
value of the said parameter increases the attraction toward the main stream against
trajectories across less crowded areas, while decreasing the density increases the
attraction towards the target.

Somehow different is the case of a crowd of individuals trying to avoid conta-
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gion, where the contrast is between the trend towards the target and the search for
less crowded areas. These dynamics can be modelled by a parameter σ ∈ [0, 1]
modelling the level of awareness of the risk of contagion, where σ = 0 and σ = 1
denote, respectively dominant attraction to the target and dominant attraction from
the search for empty space/vacuum. Therefore, modelling should include this
parameter of individual awareness of the risk of infection which can modify in a
significant way the dynamics of the crowd with respect to the dynamics in absence
of such an awareness. The role of σ is that the directional strategy is dominated
by the search for low concentration trajectories rather than attraction towards the
stream which generate high concentration. Then, modelling infective contagion
in crowds, as shown in [87], can be developed by coupling a selected model of
crowds to the contagion model presented in the preceding subsection.

The modelling approach can therefore be technically developed according to
the following rationale:

1. A model of crowd dynamics is selected corresponding to a binary mixture
of infected and healthy individuals.

2. Interactions can even disregard the aforementioned attraction towards the
main stream, while some technical assumptions can simplify the model, for
instance by constant speed and variable velocity directions.

3. The contagion dynamics modelled by Eq. (3.2) should be based on an ap-
propriate modelling of the contagion term α depending on the local density.

4. If the domain where the crowd moves includes walls and/or obstacles, non-
local boundary conditions should be implemented as shown in Section 4
of [9].

5. A technical generalization consists in the modelling of the crowd across
interconnected domains, where flow conditions depend on the geometry and
quality of each domain of the venue.

A simplification of the mathematical structure, mentioned in Item 2, can be ob-
tained by assuming that the speed is equally shared by all walkers. This hypothesis,

29



with obvious meaning of notations, yields:(
∂t + v · ∇x

)
ϕi(t, x, θ)

= η(ρ)

n∑
h=1

∫ 2π

0

∫ 2π

0
A(ϕ)(θ∗ → θ; θ∗, θ∗, κ) ϕi(t, x, θ∗) ϕh(t, x, θ∗) dθ∗ dθ∗

−η(ρ) ϕi(t, x, θ)
n∑

h=1

∫ 2π

0
ϕh(t, x, θ∗) dθ∗, (13)

where the crowd has been divided into n different groups to include infected
individuals. In this case the representation of the crowd is achieved as follows:
ϕi, i = 1, . . . , n, corresponding to the i-th walking group with level of contagion
i = 1, . . . , n, where i = 1 correspond to healthy people, while ϕ denotes the whole
set of ϕi.

The design of computational codes towards the simulation of the spatial dynam-
ics of ϕi can be developed by different techniques depending on the mathematical
structure of the specific model used for the simulations. Different examples can
be found in the pertinent literature, for instance, finite differences have been used
in [17], while Monte Carlo particle methods [110] and splitting methods have been
developed, respectively, in [19] and in [86].

If the domain where the crowdmoves includes walls and/or obstacles, nonlocal
boundary conditions should be implemented as shown in Section 4 of [9], where
this topic is treated at each modelling scale, namely microscopic, mesoscopic
(kinetic), and macroscopic (hydrodynamical). A technical generalization, which
consists in the modelling of the crowd across interconnected domains is discussed
below.

• On the role of networks: The propagation of infective states can occur in
complex venues and in transportation networks. We define a complex venue as
a small-sized network of interconnected areas, where individuals walk to reach a
certain target without using transportation systems. We define a globally connected
world as a network whose nodes are connected by transportation means, say train,
bus, airplanes, etc. Each node of a globally connected world is constituted by a
subnetwork of complex venues, typically it is a town.

The modelling of the contagion dynamics in complex venues can be developed
using in each area the approach defined above in this subsection, but accounting
for the specific physical and geometrical features of each area. The modelling
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approach to the dynamics in large networks is an open problem and here we simply
present some perspective ideas towards a rationale to tackle the said approach.

1. The globally connected world is subdivided into an exogenous network
constituted by interconnected nodes.

2. Each node is subdivided in a network of interconnected complex venues.

3. The overall dynamics are modelled by coupling the various networks, where
the input and output flows in each node are described by models of migration
dynamics across nodes in the line of the modelling approach to migration
phenomena and networks interaction proposed in [89, 90, 91].

4. A possible simplification to reduce the computational complexity consists
in local averaging of the dynamics in complex venues and even in nodes.

3.4 Critical analysis towards modelling perspectives
Amathematical computational model has been proposed in this section. Focusing
on the descriptive skills of the model, the main features, selected among various
ones, can be summarized as follows:

• It describes the dynamics of the virus transmission, from infected to healthy
individuals, depending on an encounter rate related to the confinement dis-
tance for a population characterized by a heterogeneous distribution of the
ability of the immune system.

• The model predicts the time evolution of the number of healthy, infected,
recovered and dead individuals. These dynamics are related to a model of
competition internal to each individual between virus particles and immune
cells.

• Inside each individual, progression and recovery are modelled, resulting in
the evolution of the time dynamics of the number of recovered and dead
individuals.

• Explorative ability of the hospitalization policy which can be related to the
level of progression of the pathology. Simulations can show how planning
hospitalization on the basis of the level of the pathology can influence the
output of the dynamics.
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• Explorative investigation on the confinement strategy referring both to the
different levels of confinement and to the time interval of the application of
this action.

In addition, we have proposed a rationale for the modelling of spatial pattern
formation, due to the spread of the infection throughout a given spatial domain, in
a small world as well as in the network of a globally connected large world.

The achievements reported in the items above cannot, however, be considered
the end of the story, as it is necessary to look ahead to additional work to be
developed within dedicated research programs which can take advantage of the
flexibility of the mathematical framework and of the computational tools proposed
in this paper. For instance, new specific features of the dynamics can be included
in the general framework also accounting for the perspective ideas presented in the
next sections related to virology, immunology and economics.

Focusing on the modelling approach, we mention that it goes far beyond SIR
models and recent developments, as the contents of this section shows how the
predictions of our model can contribute to the planning of health care. Indeed,
the model is derived within a multiscale vision, where the dynamics at the scale
of particles is linked to that of populations whose dynamics depends on that at
the low scales. The description of the dynamics at the higher scale of populations
provides information useful to the planning of hospitalization as it provides not
only numbers but also levels of the infection and the type of hospitalization to be
addressed to specific levels of the infection. These features are enlightened by the
simulations proposed in Subsection 3.3.

Definitely, challenging research perspectives should look at the small-scale,
namely at the dynamics inside each individual by a more detailed description of
the dynamics of virus progression which might include also darwinian mutations,
as well as by specializing the different actions that the immune system can develop
to counteract the virus progression. In addition, the transfer of the dynamics from
the small to the large world requires additional work to be technically related to
the heterogeneous features of the territory.

A detailed presentation of research perspectives is proposed in Section 7 ac-
counting, as mentioned, not only of the contribution of this present section, but
also of that of the next Sections 4, 5, and 6. In particular, Section 7 reports a
representation of the overall flow which is extended, with respect to Figure 2, to
account for spatial dynamics and the role of hospitalization.

The final goal consists in developing a systems approach towards pandemic
diseases suitable to lead an explorative model with descriptive ability to contribute
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to depict a broad panorama of simulations useful to support the selection medical
and biological strategies as well as to the strategic indications that might be
delivered within the framework of economical sciences.

4 Reasonings on virology problems
Viruses constitute one of the most abundant species on the planet, and play impor-
tant roles in all kingdoms of life. Phages, viruses infecting bacteria, are essential
for areas as diverse as the ecosystem of the oceans and gut health, and epidemics
caused by plant and animal viruses make severe impacts on agriculture and human
health. SARS–CoV–2, the causative agent of COVID-19, is a prominent example
[141]. Like SARS-CoV and MERS, which caused outbreaks in 2003 and 2012,
respectively, it is a betacoronavirus. However, in contrast to these viruses it has
evolved properties that make it far more dangerous, such as its ability to spread
between hosts with ease, and in many cases stay asymptomatic for a significant
time after infection. Mathematical modelling of individual viral particles can play
a key role in understanding how changes in viral genomes due to mutation result
in dramatically different properties of the virus.

•Modelling of viral geometry. Viral genomes encode instructions for the produc-
tion of the proteins required to build progeny virus (the structural proteins), as
well as proteins with a range of other functions in the viral life cycles. This in-
cludes virally encoded polymerases required that catalyze genome translation and
transcription, and in larger and more complex viruses (such as HIV) also proteins
to counteract host defense mechanisms. The genetic information is stored in the
form of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). Smaller viruses,
with genomes ranging between about 1k to 30k nucleotides (nts) in length, mostly
have RNA genomes, whilst larger viruses predominantly use DNA and can have
genomes up to a size of 2.5M nts. However, all viruses face the same challenge of
protecting their genomes between rounds of infection. For this, they use protein
containers, called viral (nucleo)capsids, and/or a lipid membrane, within which the
genetic material is packaged. In RNA viruses, genome packaging usually occurs
concomitant with capsid assembly, whilst in larger and more complex viruses, ad-
ditional molecular machinery (packaging motors) is required in order to package
the genome into a preformed capsid.

For RNA viruses, such as SARS-CoV-2, that package their genomes during
particle assembly, an understanding of viral geometry is important. This is because
the geometric shapes of the structural proteins and their assembly properties are
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intimately linked [131, 132], and also affect other aspects of the viral life cycle,
such as the structural transitions that in some viruses are important for infection
[76]. In particular, in order to attribute as little coding sequence as possible to
the viral capsid - a phenomenon called the principle of genetic economy - viruses
encode blueprints of only a minimal number of distinct proteins (as small as one
for the simplest form of virus), that are then repeatedly synthesized from the same
genome segment, thus delivering multiple identical copies for virus assembly. As
multiple identical proteins form the same types of interactions with each other,
this results in protein assemblies with symmetry. As Crick and Watson noted in a
seminal paper [46], they must either form spherical shells with the symmetries of
the Platonic solids - as is the case in icosahedral viruses, which constitute the vast
majority of viruses - or be rod shaped. RNA viruses with large RNA genomes,
such as coronaviruses, typically exhibit helical geometries. This is, perhaps, as
their long genomes would be difficult to compact inside a spherical container.
Coronaviruses, by contrast, wrap their 30k nt long genomes around a helical
core formed from the nucleocapsid (N) protein [40]. The nucleocapsid complex,
formed from genomic RNA and N protein, is enveloped by a lipid membrane, the
viral envelope, that is studded with three types of glycoproteins: the Spike protein
(S), which is important for receptor binding and thus virus entry into a host cell,
as well as the membrane (M) and envelope (E) proteins. While these components
are common to all coronaviruses, genetic changes in new emerging variants can
lead to substantially different infection dynamics. For example, the S protein
of SARS–CoV–2 contains a novel, short sequence of amino acids which enables
the virus to enter the cell more rapidly than previously circulating coronaviruses
[139]. Understanding how changes to the protein structure affect the dynamics of
virus assembly and virus-host cell interactions can be key to the identification of
effective drug targets.

Any repeat organisation of protein units can be modelled via lattice theory
[128, 129]. The first such theory has been proposed by Caspar and Klug in 1962,
where they classified the surface architectures of icosahedral viruses formed from
clusters of 5 (pentamers) and 6 (hexamers) identical protein subunits. Extensions of
this theory have provided models also for viruses that fall out of this scheme, such
as the noncrystallographic architectures of the cancer-causing papillomaviruses
[126], and tubular variants formed from the same proteins [127]. A mathematical
approach based on Archimedean lattices, that embody the concept of identical
local interactions for different types of proteins, has provided an overarching
framework for the modelling of icosahedral viruses that accommodates Caspar-
Klug theory as a special case [130]. A dual view, from a mathematical point of
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view, is to use affine extended symmetry groups to model material boundaries in
icosahedral viruses [82, 76, 83, 50]. This approach is also directly applicable to
the core architecture of coronavirus, which is given by a translation and rotation
operation that in combination define the 70 degree angle and the helical pitch of
140 Angstrom for a unit of 16 N proteins [40].

• Implications for viral life cycles.
Models of viral geometry provide the opportunity to the analysis of the intra-

cellular dynamics of a viral infection. Models of intracellular dynamics include
reactions, or equations, for all processes inside the cell pertaining to viral replica-
tion. They typically include the copying of the viral genome (transcription) and
protein production (translation), as well as reactions describing virus assembly
[42]. In general, virus assembly is described by a single reaction. However, this
misses the intricate interdependence of its different functions, both as a template
for replication and as a packaging substrate. Insights into viral geometry enables
refinement of these reactions [57], and therefore provides a much more realistic
view of intracellular dynamics, revealing aspects of viral life cycles that had pre-
viously been overlooked. Model outcomes can then be included into infection
models at different scales, including intercellular models of within host dynamics
and between host dynamics, and thus provide a foundation for a deeper under-
standing of viral infection dynamics. Models of the within-host progress of viral
infections can be used to inform pharmaceutical interventions [68, 43] or provide
insights into viral phenomenology [115]. The long genomes of coronaviruses
encode at least 19 distinct proteins, which in turn results in a complex interac-
tion network. Viral proteins frequently perform multiple roles in the viral life
cycle, creating degeneracy in the network. The assembly of infectious virus par-
ticles requires non-uniform amounts of the constituent proteins, with many more
structural proteins required than non-structural ones [13]. Many viruses, includ-
ing coronaviruses, therefore produce shorter fragments of their genomes, known
as subgenomic fragments, to control this process. Identifying these subgenomic
fragments [85] is a key step for building viral life cycle models, as each fragment
should be a node in the corresponding interaction network. Accurate modelling of
viral life cycles is built upon comprehensive knowledge of the interactions of viral
and cellular proteins and genetic material, which is still incomplete at this point
and an active area of research for SARS–CoV–2.

• Implications for viral evolution.
Viruses occur as populations of genetically related viral strain variants called

quasispecies [107]. Their distribution is important for their ability to adapt to
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environmental conditions, as well as to different hosts. In the case of SARS–CoV–
2, it is likely that the virus has spread from animal hosts, perhaps at a wet market in
China, as its genetic sequence exhibits high similarity with coronaviruses infecting
bats and pangolins [3].

The accumulation of mutations over time allows for the reconstruction of the
spread of the infection through the population, an essential step in developing
public health interventions [65]. Any virus accumulates mutations as it passes
through a population, as replication inside each host brings the chance for novel
mutations to occur. However, the majority of mutations do not significantly
affect the phenotype (and therefore fitness) of the virus, but some mutations confer
selective advantages to the virus and therefore becomefixed in the population. Such
mutations are often interpreted as adaptation by the virus to environmental changes,
but there are publications cautioning that this is likely an over-interpretation of the
data, particularly for widely circulating viruses [99].

• Implications for therapy.
Mutations also enable viruses to circumvent challenges from anti-viral ther-

apy. Mutation rates are much higher in RNA viruses (typically 10−5 substitutions
per nucleotide per cell infected), as opposed to DNA viruses (typically 10−7

substitutions per nucleotide per cell infected) [117], making the development of
long-lasting vaccines and antiviral therapies difficult. The rapid evolution of the
RNA genome of the influenza virus requires the development of a new vaccine
every winter [64], whereas the smallpox vaccine has effectively eradicated the dis-
ease [59]. Better understanding of the mutational landscape of SARS–CoV–2 will
enable predictions of the efficacy of vaccination efforts[32, 122]. Many existing
antiviral therapies are developed against widely shared viral mechanisms, such as
polyprotein cleavage and genome replication, however these are often susceptible
to rapid adaptation by the virus [61]. It is therefore essential to better understand
the geometric constraints on viruses, as these can point to evolutionarily conserved
features that could serve as more stable and effective drug targets.

Due to its large genome size compared to other RNA viruses, and the vast
frequency of infection, and thus opportunities for mutation, during a pandemic,
understanding the consequences of mutations, and finding evolutionarily stable
targets, is particularly important for viruses such as SARS–CoV–2. Mathematical
modelling can support the discovery of such novel therapeutic targets inmanyways.
Traditionally, this occurs through the analysis of individual viral components and
their dynamic properties. For example, since the start of the COVID-19 pandemic,
normal mode analysis and quantum mechanical computations have been used to
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better understand potential drug targets on viral proteins. This includes structural
proteins, most importantly S-protein, which is involved in ACE2 receptor binding
[116, 1], as well as non-structural proteins, such as proteases [56]. The rapid
emergence of COVID-19 has also spurred the development of novel methodologies
to support the discovery of antiviral therapies, in particular in silico screening
techniques of multiple compounds against SARS–CoV–2 proteins [58, 142, 62].

Once effective antiviral therapies have been developed, mathematical mod-
elling can provide valuable insights into effective treatment [67] and mechanisms
of drug resistance [80, 103]. The modelling of viral life cycles based on viral
geometry adds a new dimension to the modelling. It provides a framework in
which the merits of different forms of antiviral strategies can be compared and
synergies explored [25], thus revealing novel opportunities for antiviral therapy.

5 Reasonings on immunology problems
A systems approach to model, by a differential system, the dynamics of the SARS–
CoV–2 in a population has been developed in Section 3 within a general framework
of a multiscale vision which includes the competition inside each individual be-
tween a progressing viral infection and the immune system. This competition
initiates when the virus is transferred from infected to healthy individuals by a
dynamics modeled at the higher scale. This section provides a description of
the immune competition at the low scale and outlines the relevant features of the
aforementioned dynamics according to the present state of the art.

• The contagion.
The contagion by the SARS–CoV–2 occurs mainly by air, breathing respiratory

droplets released by an infected person when coughing, sneezing or speaking. The
virus load in the droplets increases as the infection progresses [119]. Respiratory
droplets finally land on various surfaces where the virus maintains its infective
capacity for various times [134]. Therefore, SARS–CoV–2 can also be transmitted
by contact between a susceptible person and the infected one or touching contam-
inated surfaces. In this case, the infection takes place if the susceptible person
touches the mucosa of the mouth, nose or eye after capturing the virus [138]. The
probability of infection rests on the viral load carried by the droplets expelled
through respiratory emissions and the persistence over time of virus infectivity
depending on the environmental conditions.

With the arrival of the SARS–CoV–2 virions on mucosal surfaces a quantitative
and time-sequence competition between the virus ability to infect and host defense
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mechanisms is putted in motion. The final outcome (inhibition of the viruses,
minor and asymptomatic infection, a severe and fatal disease) rests on a series
of confrontations between the virus infective ability and distinct immune defense
mechanisms [100].

• First line of defense: the mucosal barrier.
The number of infecting SARS–CoV–2 particles is a first and crucial variable

in the competition between the virus and host defense mechanisms [100]. The
virus load arriving on mucosal surfaces has to deal with the very effective barrier
made by the mucus. Mucus is a complex mixture of glycoproteins continuously
produced by goblet cells in the mucosal membranes and by particular glands. It
contains salts, lactoferrin, enzymes and antibodies (secretory IgA and IgM) [26].
This viscoelastic gel covers the mucosa lining the nose, throat and lungs. By
harnessing and neutralizing viral particles, it prevents a direct contact of the
viruses with the surface of the epithelial cell of the mucosa. Mucus production
is regulated mainly by two lymphokines (IL-13 and IL-22) secreted by sentinel
lymphocytes associated with the mucous membranes. IL-13 is mainly produced
by Innate Lymphoid Cells (ILC), IL-22 by T-helper lymphocytes17 (Th17). The
overproduction of mucus gives rise to phlegm [125].

Mucus is continually transported by the coordinate beats of the cilia of the hairy
cells in the mucous membranes, then it is swallowed and destroyed in the stomach.
Mucus transport is fundamental for its protective action. Under normal conditions,
the ciliary beat frequency is around 700 beats per minute. The intensity of the
beats is negatively regulated by IL-13 and is lowered by environmental pollutants
present in the breathed air, by the humidity and by the low temperature [95].

The importance of the mucus barrier in hindering SARS–CoV–2 infection it
is unexplored, although it is well know the influence that environmental factors
(humidity, temperature, air pollution, etc.) have on the defense against coronavirus
infections that cause winter colds. It is thus probable that in the great majority
of cases mucus and the beats of cilia clear the invaders. Nevertheless, when
the delivered viral load is very high and mucus production and its transport are
disturbed, a few virus particles might be able to sneak through and establish a
direct contact with the surface of mucosal epithelial cells.

The peculiar current distribution of the SARS–CoV–2 pandemic, which some-
what has spared the warmer countries while has hit harder areas with high air
pollution could depend, in addition to a different survival of the virus in a warmer
and drier environment, on a more efficient barrier effect created by mucus and
ciliated cells. On the other hand, circumstances requiring speaking aloud in a low

38



temperature and humid environment favor SARS–Cov–2 super–spread [92].

• Overcoming the barrier.
An efficient barrier defense confrontedwith a low viral load probably efficiently

stops the infection. In all cases, however, the barrier drastically reduces the number
of viral particles that manage to reach the surface of the cells of the mucosa. If
any SARS–CoV–2 particles get through the mucus layer, they can reach the cell
membrane of mucosal cells. In the event that a physical contact takes place, the
SARS–CoV–2 Spike glycoprotein, that forms a sort of crown on the surface of
SARS–CoV–2 particles, anchors the virus to the cell surface.

The Spike glycoprotein forms homotrimers protruding from the virus surface.
Each Spikemonomer is made by an external S1 domain and a S2 domain connected
with the virus membrane. The distal S1 domain comprises the Receptor Binding
Domain (RBD), a molecular subunit that engages with high affinity a region of the
N-terminal domain of human Angiotensin-Converting Enzyme (ACE2). ACE2
is an ectoenzyme that is normally highly expressed on the surface of the cells of
human respiratory and intestinal epithelia. It is also expressed on the surface of
many other kind of cells, even if at lower density [78].

Following Spike-ACE2 binding, other cell ectoenzymes (Transmembrane Pro-
tease Serine 2 TMPRLRSS2 and Furin) present on the surface of human cells cut
the Spike protein separating S1 from S2 domain. As a consequence of the cut,
the S2 domain, connected to the virus membrane, exposes particular sequences of
amino acids (fusion peptides) that facilitate the fusion between the viral capsid and
the membrane of the human cell [47]. Thanks to this fusion, the RNA of the virus
enters the cell where it is directly translated into proteins by the human ribosomes.
New virions are assembled as reported in the previous Chapter and the cell die
releasing millions of new viruses.

• Second line of defense: intracellular reaction against viral RNA.
The invaded cell is endowed with several mechanisms to sense and block

viral invasions. In the cell cytoplasm, the SARS–CoV–2 RNA are recognized
and destroyed by RNA helicases. The peculiarities of viral RNA are also is
recognized by RIG-1-like receptors and Toll like receptors (TLR) present in the
cell cytosol. Upon activation, these receptors induce signaling cascades leading to
the phosphorylation of transcription factors ultimately conducting to transcription
of Type I interferon (IFN), a cytokine that activates antiviral programs in the
invaded cell and induces the expression of families of transmembrane proteins that
inhibit virus entry in nearby cells [134].

In addition, the signals transduced by RIG-1-like and Toll like receptors trigger
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the assembly of the inflammasomes, cytoplasmatic multimeric complexes. Once
assembled, the inflammasome activate caspases which permit the production of
high amounts of important pro-inflammatory cytokines (IL1, IL18, . . . ). The
secretion of the mature form of these cytokines promotes the release of additional
cytokines and the induction of an innate immunity inflammatory response. More-
over, inflammatory caspase 1 cleaves gasdermin D to cause cytokine release and
pyroptotic cell death, a kind of programmed cell death that occurs most frequently
upon viral infection. The death of virus infected cell is an effective way to block
the progression of the viral infection [102].

Faced with this sophisticated series of receptors and intracellular reaction
mechanisms, SARS–CoV–2 has elaborated several mechanisms to avoid viral RNA
recognition or to antagonize with receptor signal transduction. The first protein
coded by the SARS–CoV–2 RNA penetrated inside the mucosal cell, ORF1ab,
is a chain of 16 proteins joined together. Two portions of this long protein
make the cuts that free the different proteins. The activity of several of them is
to interfere with intracellular reaction mechanisms: NSP1 protein prevents the
cell from assembling antiviral proteins; NSP3 protein alters the regulation of cell
protein, thus reducing cell ability to put inmotion the antiviralmechanisms; NSP10
and NSP16 proteins protect viral RNA from destruction; NSP13. Other virus
coded protein, such as ORF6 interfere with the signals activating cell reaction to
viral RNA; ORF9b protein suppress intracellular signaling thus limiting antiviral
defenses nonspecifically [45]. Other viral proteins interfere with the signaling
downstream of IFN release: ORF3a, ORF6 viral proteins alter various steps of the
signal transduction pathway that bridge the IFN receptor to the STAT proteins that
activate transcription of IFN-stimulated genes [134].

• Third line of defense: the inflammatory reaction.
If the infecting viral load is enough to overcome the mucosal barrier and

sneak through intracellular defense mechanisms, the spread of SARS–CoV–2 RNA
becomes evident in nostril, pharynx and eyemucosal surfaces. Here, viral infection
is confronted by multiple reaction mechanisms of innate immunity. The intensity,
efficacy and features of this third line of defense decides the natural history of
infection: whether the virus spread will be efficiently blocked in upper airways
and how many viruses will reach the lungs [100].

Humoral elements of innate immunity, including the complement and coagu-
lation systems, soluble proteins of innate immunity such as the Mannose Binding
Lectin, natural antibodies and cross-reactive antibodies induced by previous in-
fections by different viruses are immediately confronted with the virus spreading
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and the local cell damages. The damages associated with the viral invasion, alarm
signals and cytokines induce the dilatation of local post capillary venule with the
subsequent exit of plasma and of reactive leukocytes. The reactivity of leukocytes
will be driven by multiple alarm signals, cytokines and interferons released by
infected and dying epithelial cells.

Metatranscriptomic sequencing performed to profile the inflammatory reac-
tion shows a markedly elevated expression of several chemokine genes. CXCL8
chemokine gene overexpression is directly connected with the recruitment of neu-
trophils into the inflamed tissues, while the upregulation of CCL2 and CCL7
chemokine genes plays a central role in the recruitment ofmonocytes/macrophages.
Consonant with this pattern of gene expression, neutrophils, activated dendritic
cells, monocytes are the most abundant cells present in the reactive infiltrate [14].

SARS–CoV–2 infection triggers the expression of several IFN-inducible genes.
While this suggest that a robust IFN response is ongoing, the IFN gene is not
upregulated. This discrepancy, probably due to the interference exerted by SARS–
CoV–2 proteins on the IFN gene expression and on the signaling cascade of IFN
receptors, has a crucial importance in shaping the efficacy of the inflammatory
reaction and the evolution of the viral infection [134, 140]. This confrontation
between host’s innate immunity and SARS–CoV–2 decides whether infection will
be blocked in upper airways or the virus will reach the lungs, making the patient
sick or very sick [100]. Epidemiological data suggest that this reaction is extremely
effective as the vast majority of SARS–CoV–2 infected people are asymptomatic
or minimally symptomatic.

• Pathogenic fallout of innate immunity reactions.
The feature of initial local viral spread, the genetic characteristics and health

status of the infected person decides whether the innate immunity reactions will
lead to the containment of the SARS–CoV–2 infection or will worsen its evolution.
For example, IFN is protective in the very early stages of the inflammatory re-
sponse, while later it becomes pathogenic [134]. The expression of ACE2 on the
cell membrane is modulated by IFN, and its upregulation in airway mucosal cells
favors the expansion of SARS–CoV–2 infection [143].

The intracellular recognition of viral RNA and the presence of SARS–CoV–
2 coded ORF3, ORF8b, and Envelope proteins triggers the leukocyte assembly
of the inflammasome and the consequent massive production of IL-1 and IL-18.
Similarly, the intracellular presence of SARS–CoV–2 coded NSP9 and NSP10
proteins trigger IL-6 production [134]. These three cytokines together induce
anti-viral programs and markedly enhance the inflammatory response. However,
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elevated serum concentrations of IL-6, IL-1 and IL-18 may result in a systemic
“cytokine storm” involving the secretion of vascular endothelial growth factors
(VEGF), monocyte chemoattractant protein-1 (MCP-1), IL-8 and additional IL-
6. The vascular permeability and vessel leakage are increased leading toward
hypotension and acute respiratory distress syndrome (ARDS) [143]. In this way,
if the SARS–CoV–2 is able to reach the lung alveolar cells, innate immunity
mechanisms driven by the cytokine storm may dramatically contribute to disease
severity [134].

• Fourth line of defense: The T and B cell adaptive response.
T cells play a central role in the healing of numerous infectious diseases. CD4

T cells are required for the activation of the production of high affinity antibodies
by B cells. Moreover, they modulate and guide a more efficient inflammatory
response. CD8 T cells are able to find and kill virus infected cells before they
become factories of millions of new viral particles. Given the central role T cells
have in the healing of viral infections, it is not surprising that an overall reduction of
T cells in peripheral blood is associated the aggravation of SARS–CoV–2 infection.
T cell reduction during SARS–CoV–2 infection is likely due to a number of factors,
including the cytokine storm [134].

A persistent and robust T reactivity to the peptides of Nucleocapsid, Membrane
and Spike SARS–CoV–2 proteins is evident in patients recovering from SARS–
CoV–2 infection. Often a preferential specific reaction against Spike peptides
was found. While the induction of a robust T cell reactivity is essential for virus
control, a too high CD4 T cell reactivity may facilitate the development of lung
immunopathologies and exacerbate the cytokine storm [134, 102].

While the reaction of CD8T cells is directed to the killing of virus infected cells
in which millions of new viral particles are assembling, the action of antibodies
is against each viral particle. An antibody binding to the proteins exposed on the
external surface of a virus severely limits it capacity to infect the target cells. In
most cases the antibodies are mainly directed towards the Spike protein. In some
cases, it has been possible to identify antibodies that specifically bind the RBD,
the region of the Spike glycoprotein that binds to the ACE2 enzyme on human
target cells. Often, the appearance of virus specific IgA and IgM and Ig (serum
conversion) is associated with a complete virus clearance: the SARS–CoV–2 RNA
is no more detected in the swabs.

The effectiveness of antibodies in neutralizing viral infectivity is also shown by
the success of therapies based on the transfer of plasma obtained from convalescent
patients. Moreover, in several cases it has been possible to obtain monoclonal
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antibodies that interact with RBD and that block SARS–CoV–2 infectivity starting
from B cells obtained from patients in convalescence. Antibodies play a role not
only in the healing but also in preventing SARS–CoV–2 re-infections [93].

• The dark side of the adaptive responses.
In many cases of SARS–CoV–2 infection, the subsequent activation of adaptive

responses corresponds to healing. However, the situation is not always so clearly
defined. Some people recovering from SARS–CoV–2 infection seem unable to
produce a significant antibody response. Moreover, there are various reports
on high antibody titer associated with a more severe clinical outcome. These
observations highlight that in certain cases antibodies can facilitate viral infectivity,
a phenomenon known as Antibody-Dependent Enhancement (ADE) [134, 108].

When the various mechanisms of immune reactivity fail to control virus spread
and the infected person starts to produce and shed copious amount of SARS–CoV–
2, the virus may diffuses to all the body districts infecting the cells that express the
ACE2 receptor enzyme. The expression of these receptor enzymes is particularly
abundant on the cellmembrane of both lung alveolar epithelial cells and enterocytes
of the small intestine [136]. If the virus infects and replicates in lung alveolar or
cells in the cell of intestinal mucosa, the immune attack may be responsible of
major pathophysiological complications. The deposition of immunocomplexes
made by antibodies and SARS–CoV–2 virions triggers Complement activation,
vasodilatation, inflammatory reactions, coagulation and tissue damage. Local
cytokine and chemokines contribute to the local vasodilatation, recruitment of
innate immunity cells and serum antibodies extravasation [100, 134].

The massive killing of virus infected cells leaves the lung alveoli stew of
fluid and dead cells. Some patients slowly recover while others develop a poor
oxygenation index and a condition called acute respiratory distress syndrome
(ARDS) requiring intensive care therapy and mechanical ventilation. Similar
lesions occur in the intestine. The spread of SARS–CoV–2 throughout the body
also promote blood clots, hearth attack, and cardiac inflammation. At this stage,
almost half of the patients slowly recover whereas the other die [136].

• Additional reasonings.
SARS–CoV–2 is a sophisticated single stranded RNA virus endowed with the

capacity to infect in a short time over 6 million people around the world and
to kill over 370,000 of them [44], causing dramatic health, social and economic
problems. Epidemiological studies suggest that the number of people who have
been infected with the virus is probably much higher [49]. Therefore, even the
infection by this extraordinary virus appears to be managed by the immune system

43



in well over 90% of cases. Paradoxically, much of the virus lethality come from a
“friendly fire” due to an excessive immune reactivity [134, 136].

Immune defensemechanisms that are activated to block SARS–CoV–2 infection
are here schematically distinct in four lines. Each one is based on peculiar and
distinct reaction mechanisms and follows a different strategy. Nevertheless, these
four lines of reaction are highly interconnected with a very integrated transition
from one line of defense to another.

In the vastmajority of cases, each of these lines of defensewins its confrontation
with the virus. Even if, as to now, it is not yet possible to know what the
percentage of complete victory is, each line of defense proves to be extremely
effective. Probably, the percentage with which the defensive system wins against
the infectious ability of SARS–CoV–2 is particularly high as regards the first lines
of defense. The elevated lethality of the virus in elderly people due to the natural
immunodeficiency connectedwith aging (the immunosenescence [109]) highlights
how important the defense role played by the immune system is in the control of
SARS–CoV–2 infection.

6 Reasonings on economy and social problems
In this section we intend to uncover the socio-economic implications of the spread
of COVID-19. After distinguishing between the direct impact of the pandemic and
the indirect one of the lockdown, we discuss the potential limitation of generalised
lockdown policies facing localised contagion dynamics. We emphasize the role
of heterogeneity in order to properly account for the contagion dynamics itself.
Moreover we suggest the explicit account of clustered networks as a potential
modelling extension. Additionally, we stress the importance of the timing of the
lockdown and the need to introduce early warning indicators. We conclude by
outlining a series of policy actions to be put in place beyond lockdowns to deal
with the spread of collective infectious diseases.

6.1 The economic impact of the pandemic
The explosion of the COVID-19 pandemic and the ensuing policy of social dis-
tancing undertaken by many countries have put the organization of the production
and the economy as a whole under an unprecedented stress. Analysis of the impact
of the pandemic on the labour market are now spurring with scaring projections in
terms of number of jobs and related income losses. The ILO projects two hundreds
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millions losses worldwide. The Internationally Monetary Fund estimates a decline
of world GDP by 3%, a drop much more severe than the 2008-2009 crisis, while
the Euro-Area estimated loss currently is 7.5% of GDP [77]. Both are conserva-
tive forecasts. However these numbers are expected to increase. Already after one
month since the lock-down, around 11 millions European workers have been hit by
the consequence of the pandemic, with an increase of four millions unemployed
people and with seven millions of short-term contract workers at risk, according
to ETUC estimates [75].

The direct and indirect impacts of the pandemic invest many realms of the
economic analysis, from the organization of production and global value chains
(GVCs), to patent systems and appropriability conditions in the pharmaceutical
sector, to the provision of health as a public good, up to the study of unconventional
fiscal and monetary policies (see [11]). On top of that, implications in terms of
the organization of the workplace and related of the work-process are going to be
huge. Indeed, social distancing is expected to jeopardize business and employment
opportunities in a labour market at the outset marked by strong inequalities.

To detect the economic impact of the COVID-19 pandemic it is important to
distinguish the direct economic effects and the indirect ones of the policy of social
distancing. The direct impact is and is likely to be per se quite limited. Among
developed countries, in Europe, mortality has been concentrated on the elderly
population, with significant losses only in the range of plus 70 years. Differently,
in the U.S., whose healthcare system is largely private, impeding provision of
health assistance for poor and more vulnerable communities, the impact of the
virus is spreading remarkably across Blacks, Coloureds, and Latinos of relatively
young age (less than fifty). Indeed, the existence of previous health diseases
as diabetes and obesity, more diffused among the poorest population, has been
recognised a factor aggravating the infectiousness of the virus.

Notwithstanding heterogeneity across countries, in general it is not likely to
expect the pandemic impacting on labour supply to amagnitude recalling the Black
Death or even the Spanish Flu (see [14]). Together, this pandemic, unlike other
historical episodes such as the Plague of the 14th century, will not serve to alleviate
income and wealth inequalities, by increasing the wages of a scarce labour force
and reducing the value of real estates on sale for the death of their primary owner.
On the contrary it is, and will be much more so, amplifying existing inequalities,
ranging from access to hospitalization, possibility to work-remotely, benefiting
of a stable income, risk of unemployment (see [38]). On top of that, even risks
of contagion are strongly heterogeneous, much more concentrated among worker
categories directly exposed, such as those in the health sectors, and relatively less
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concentrated for workers able to work remotely.
Granted the unequal effects of the direct and indirect impacts of the pandemic,

the modelling effort has to focus on heterogeneity to meaningfully capture also its
economic consequences. In particular, given the concentrated direct impact on
the elderly population, one might not consider any direct economic consequence
arising from the death of the elderly. This does not mean that deaths are ac-
ceptable because they do not impinge directly on the economic system. It means
that we refrain from attributing any direct value-estimation to the life of human
beings. Clearly, deaths are an enormous social and humanitarian cost which have
to be considered as such well beyond any economic consideration grounded on
dismissible cost-benefit analyses.

Therefore, the economic impact of the pandemic is largely indirect:

• The economic damage of the pandemic increases with the amplitude and
severity of the lock-down.

• The economic damage, arising from the lock-down, unevenly hits the popu-
lation, with low-income individuals more harshly affected than high-income
ones.

Defining the all set of potential variables and transmission mechanisms affect-
ing the economy via the lock-down is out of the scope of the paper. As mentioned,
the economic impacts are quite diverse, including production, global value chains,
business closures, job and income losses, fiscal burden of policy interventions,
debt accumulation, financial instability and markets volatility, just to mention a
few. All these mechanisms, diverse as they are, might interact via cascade and
cumulative effects along propagation channels, all contributing to fuel the longest
last and most severe crisis the economy has faced since the 1929. The end re-
sult will be various possible “damage functions”, which we shall present below,
combining the diverse economic effects and their potential interaction.

Let as define a damage function D(L(α), σ(ωi/ωmax)) depending on the in-
tensity of the lock-down and on a proxy of inequality of a given system. L(α), the
lock-down, is governed by the parameter α, discussed in Section 3, increasing with
the amplitude and duration of the policy, represented by the reduction of α, while
σ(ωi/ωmax) represents the spread between the actual and the maximum income
level in the system, with low-income individuals hit harder than high-income ones,
where ωi defines the income level of individual i.

We can graphically sketch its functional form. Figure 12 depicts a positive
non-linear behaviour of the damage function vis-a-vis the intensity of the lock-
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Figure 12: The economic damage as a function of the lockdown

down, meaning that the higher the intensity of the lock-down, given by a reduction
of α, ranging from [0, 1], the higher the economic damage, and non-linearly so.
The lock-down policy is implemented by reducing the parameter α, controlling
for social distance. For low intensity of the lock-down, the economic damage is
rather negligible (e.g. local lock-downs). Extending the lock-down after the first
inflection point harshly hits the economy with more than proportional increments
of the damage, while after very persistent lock-downs (second inflexion point), the
cumulative damage is so high that it can only increase less than proportionally.
The intersection between the curve and dashed vertical axis at α = 0 represents
the maximum damage.

Figure 13 presents a negative convex relationship with income level, meaning
that the lower the level, the higher the impact of the economic damage. The
damage reduces non linearly with income level so that losses scale down more
than proportionally and relatively richer people turn out almost unaffected. The
maximum of the damage is at the vertical intercept. Given the actual income
distribution Ω = (ωi+1, . . . , ωi+n), the damage will be higher, the higher the ratio
σ between the minimum and the maximum income level, that is when ωi → ωmin,
conversely it will be lower when ωi → ωmax .

Note a major implication of the foregoing argument: the relationships between
human losses and economic ones not only is not linear but under some lock-down
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Figure 13: The economic damage function across income levels

conditions might not be even monotonic. Tighter degrees of lock-down for sure
imply higher economic losses but in some circumstances, as we shall see, might
also yield higher rates of infection.

6.2 Generalised lock-down policies versus localised contagion
dynamics

The model developed in Section 3 allows to overcome the limitations of the most
incumbent compartmental modelling approaches. Indeed, it accounts for infection
rates endogenously affected by the state of the virus invasion in infected individuals
(u j). This is a first major advancement in that one can account for the importance of
the viral load in determining the evolution of the disease after the individual enters
the infectious status. The second major advancement relevant to the discussion
here concerns the definition of an intra-body interaction process between the virus
and the individual immunity (wk). Now, considering the infection process resulting
from the coupling of these two types of heterogeneity, this will not yield a single
parameter R0 but a distribution of R0,t,i = (R0,i+1, ..., R0,i+n) across individuals,
evolving in time, according to the state of the infection.

Such an analysis encompassing heterogeneity fundamentally differs from SIR
compartmental structures modelled by differential equations (as pointed out long
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ago by [114]), so that the level of R0 parameter decreases with:

• The degree of individual heterogeneity in susceptibility to infection by the
virus.

• the clustering of the contact structure.

The foregoing model introduces individual heterogeneity and local interac-
tions while considering the rate of interaction η0 as constant and equal across all
individuals (e.g., space homogeneity). Under that set-up, the simulation analysis
points at a general positive impact of the policy of social distancing, implemented
by the reduction of the α parameter, decreasing the peak of contagion and the
actual number of infected individuals.

The current model specification can be extended in two directions:

1. The interaction dynamics across individuals is made to evolve in structured
networks, say lattices which can represent homes, workplaces, schools,
hospitals. This would imply a modification from η0 ⇒ ηi, j .

2. The level of infection, namely u j , may be affected by the interaction process
itself, u j ⇒ u j(ηi, j), implying that the virulence increases with repeated
contacts.

The relevance of the two extensions is well supported by the evidence both on
the infection dynamics and on its spatial heterogeneity. Indeed, the R0 estimated
in hospitals is by far higher than the one which might have been recorded on the
streets. Contagion has spread even during the lock-down, mainly occurring at
home and in hospitals. In the following we shall outline two potential venues to
account for the above dynamics.

Extension 1: occasional versus structured contacts
Let us suppose the existence of different types of α parameters, one for occasional
contacts, say occurring along a street, and one for structured contacts, occurring at
home and in hospitals: αo and αs. Under two different social distance parameters,
the policy of the lock-down has opposing effects: from the one hand it reduces αo
by reducing occasional contacts, while, on the other, it increases αs by increasing
structured contacts. If this is the case, the overall contagion rate might not be
reduced by lock-down policies. On the other hand, the lock-down will have a
strong economic damage as discussed above.
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Thus, one could envisage heterogeneous probabilities of interaction and dif-
ferent interaction dynamics, e.g. (i) homogenous/random contacts vs structured
contacts in lattice, and (ii) presence or absence of the possibility of long-range
infection (small world). This will result in a distribution of individual social in-
teractions, say (αi+1, ..., αi+n). Understanding the extent to which the contagion
dynamics is clustered also entail alternative policy measures. So, for example,
generalised lock-down policies might be ineffective under clustered dynamics
of contagion.

Extension 2: coupling interaction with virulence
Actual recorded contagion in schools and workplaces has been very low. Notwith-
standing the limited robustness of such evidence due to the absence of a generalised
testing strategy, a possible higher immunity response in the youth and adult popu-
lation demands a second potential extension of the model, namely the possibility
of making the virulence dependent also on the “types” of interacting agents with
higher immunity rates in youth and young adults.

6.3 Early warning indicators: when and how long
Countries have reacted very differently in terms of the management of the COVID-
19 crisis: some countries, including South-Korea, Taiwan, New Zealand, Japan,
Germany report case-fatality rates ranging from [1.4 - 5] %, while some other
countries like Italy, France, Spain, U.K., Belgium do report far higher rates, in the
range [10 - 15] % (see [79], data retrieved on the 26th of May). Sweden, with no
lock-down policy at all records a fatality rate proximate to the Italian one [11.9 vs
14.3] %. These numbers are clearly biased by data collection and testing strategies.
However, country heterogeneity is a robust fact.

More than the amplitude of the lock-down, a variable strongly affecting the
overall dynamics of the pandemic seems to be the timing of the policy intervention.
In general, timely and selective closures have been more effective than delayed
generalised closures. This has been the case of South Korea, with massive contact
tracing technologies, but also of Germany, which has undertaken a massive testing
strategy and very early selective isolation. In both cases, the lock-down was not
generalised.

Together, hospital capacity and the number of ICU beds has been the other
crucial variable. However, while ICU beds in the very short-term might be
considered as relatively fixed, this is not the case for early detection, which might
even prevent hospitalization.
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When the policy measure should be put in place? Is there any threshold
indicator useful to understand the timing of the policy action? Together, when the
lock-down should end? Which type of indicators should be used? These questions
are extremely important but addressing them entails the appropriate understanding
of the contagion dynamics. The saturation of ICU beds indicator strongly reduces
rooms for policy actions. Being a “downstream” indicator, the system will detect
the saturation only when the contagion is peaking, or at least accelerating.

Early warning indicators, upstream, are of crucial importance. And they in-
volve monitoring systems communicating suspect phenomena, like, in the Corona
viruses case, anomalous picks of pneumonia and persistent flue symptoms across
patients. Early warning indicators are also crucial to avoid unnecessary long lock-
down phases, exerting strong impact on the socio-economic systems but less so on
the contagion dynamics.

Extension 3: introduction of early warning indicators and the interaction
with policies
At the current stage the model includes in the dynamics of infection the social
distance parameter as a crucial variable of policy action. The model might be
extended by introducing an interaction from an early warning indication of the
state of the system to the containment, hospitalization and treatment policies also
able to reduce the pool of susceptible individuals, isolating and treating early
detected cases, thus avoiding the spreading of the contagion.

Extension 4: endogenizing the timing of the policy action
The time of the policy action is currently exogenous to the model. However,
the timing in which the social distance parameter is changed might become en-
dogenous and depend on some state of the system as well, e.g. the fraction of
infected/hospitalised/dead individuals. This ought to apply both to the beginning
and the end of policy measures.

6.4 Policy actions beyond the lock-down
Overall, the spreading of the pandemic is exacerbating a series of old inequalities
and vulnerabilities. If the common perception is that “everybody is equal” in
front of the pandemic at closer inspection this is not true. What people do at
work, their contractual framework, and their position in the internal organizational
hierarchy strongly affect the possibility to remote working. Gender and geograph-
ical imbalances matter. The digital divide is exacerbating: access to high-speed
internet connection and ICT-devices are the necessary condition to learn at the
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e-schools. However learning dramatically depends on the education level of the
parents themselves. Schools are never been as unequal as nowadays.

The coupling of the pandemic and social distancing are making diverse risks
conflating: health risk (exposition to social contacts are higher for low income
occupations), income risk (probability of job losses is higher for temporary low-
income occupations), employment risk (feasibility to remotely work is lower for
low-income occupations).

In the following, we shall list a series of policy actions to be undertaken, beyond
the lock-down, in a medium term perspective, to cope with the increasing risk of
widespread, collective diseases. Overall, the health-management system deeply
affects the contagion dynamics and therefore needs to be completely reorganised.
Let us highlight some crucial reforms to be undertaken in our view:

• Increasing the overall public expenditure for the health system by strength-
ening local hospitals and laboratories: a capillary hospital system is able to
cope with widespread diseases.

• Reducing the public subsidies to private clinics, being the latter more inter-
ested in profit-seeking activities rather than general medical care assistance
and provision of ICU beds for the general public.

• Strengthening the role of GPs, implementing forms of communication and
monitoring activities, fostering at home visits.

• Increasing the public financing research.

• Compelling the pharmaceutical sector to perform genuinely innovative R&D
activities.

• Revitalizing national-based laboratories to discover drugs away from the
market system starting with vaccines.

• Maintaining inventories of safety devices and instruments necessary to equip
hospitals, protect workers and perform testing

7 Looking forward to research perspectives
A systems approach to modelling the contagion and spread over a given territory
has been developed in our paper, where a multiscale vision has been a key feature
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of the approach which includes hospitalization dynamics, and recovery or/death
of patients.

An updated version of Fig. 2 is shown in Fig. 14 to account for all specific
blocks and related flow chart of the systems approach. Specifically, for spatial
dynamics and the role of hospitalization which, in agreement with the reasonings
presented in Sections 4–6, can be viewed as an important feature of the systems
approach. The figure shows the following blocks:

Block 1: The dynamics of contagion is at the level of individuals depending on
the level of confinement only in the case of spatial homogeneity, while a deeper
understanding of these dynamics might account for crowd movement in complex
venues.

Block 2: The dynamics are generated by the contagion and, subsequently, develop
inside each individual depending on the interaction at the small scale between virus
infection and immune particles, in host dynamics. Themodelling takes account the
heterogeneous behaviour of individuals, as well as the heterogeneity, progression
and competition inside each individual entity.

Blocks 3,4: Show the output of the interactions consisting in recovery or death of
patients, where this final exit can go through the passage across the hospitalization
which is related to the level of the pathology.

Block 5: Refers to the passage from Block 2 to an organized hospitalization
dynamics. If the dynamics within Block 5 are properly modelled accounting for
medical care, the number patients which are recovered should increase, while that
of dead persons should decrease.

Block 6: Refers to the dynamics by which the contagion spreads over a terri-
tory made of a sequence of interconnected areas. The dynamics might include
aggregation through endogenous networks.

Block 7: Studies the dynamics by which the contagion spreads over a territory
through long range exogenous networks, where connections between nodes depend
on the transportation system.

The systems approach has been somehow revisited in Sections 4,5 and 6 by the
contribution from the sciences of virology, immunology, and socio-economics.
Sections 4 and 5 mainly, but not exclusively, refer to Block 2, while Section 6
mainly refers to the whole systems approach.

We do not naively claim that our paper has given an exhaustive description by
a differential system of the highly complex dynamics under consideration. Indeed,
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Figure 14: Transfer diagram of the model. Boxes represent functional subsystems
and arrows indicate transition of individuals.

the multidisciplinary interaction has motivated a number of challenging research
perspectives which, in turn are not straightforwardly transferred to mathematics as
some of them need additional research within the specific fields the said hints come
from. Therefore, keeping the framework represented in Fig. 14, the modelling of
the dynamics within each block can be further developed and improved.

The strategy to take advantage of the contribution from virology, immunology
and economy is consistent with the idea that these disciplines refers to milestones
of the research on infections and possible pandemic. Indeed, virology can work to
explain the onset of the virus by mutations and selection related to the environment
where the virus can progress, immunology studies the complex interactions be-
tween virus infection and immune system in view of the development of vaccines
and medical care, economics can develop studies on the impact on society of the
various possible actions developed towards the control of the pandemic. Therefore,
the contribution of mathematics should be developed with the aim of providing
useful inputs to the scientists and crisis managers involved in the multidisciplinary
dialogue.

Bearing this specific target in mind let us develop a further study to investi-
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gate the lock-down and lock-up strategy by adding simulations those in Section 3
corresponding to Figures 8 and 9 related to the ICU hospitalization capacity in a
territory. In detail, they show that locking-down too early can generate a second
outbreak larger than the first one, with a subsequent number of individuals re-
quiring a hospitalization larger than the effectively available beds. These previous
simulations suggest the introduction of the key number:

κ =
α · β

γ

which refers the intensity of the infection α · β to the immune defence γ. Namely,
increasing values of κ denote an increasing level of the infection attack.

The following new simulations study the sensitivity to the parameter κ depend-
ing on different values of α, β and γ however with the constraint of keeping κ
fixed, see Fig. 15. In more detail:

• κ = 0.2: (a) If β = 0.1 is kept constant, then decaying values of the infection
rate α are followed by the same decay of the immune defence due to the
constraint κ = 0.2; simulations show that, even if the immune defence
decays, the peak decays and the infection spread is delayed.

• κ = 0.2: (b) If α = 0.4 is kept constant, then decaying values of the virus
progression rate β are followed by the same decay of the immune defence
due to the constraint κ = 0.2; simulations show that, even if the immune
defence decays, the peak decays and the infection spread is delayed, by a
faster decay-delay, but the initial infection is much higher than that of case
(c).

• κ = 0.02: (c) The difference with respect to case study (a) is that the decay
of the infection rate α only influences the delay.

• κ = 0.02: (d) The dynamics is analogous to that of the case study (b) but
the height of the peak is lower.

A very first, and rapid, biological interpretation is as follows:

The defence of the immune system applies an effective contrast to the
virus progression. However the efficacy of the action is more relevant
if the defence keeps a fixed value independently on the level of infection
or progression. If, in addition, the defence increases with increasing
values of α and β, the efficacy is even higher.
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(a) κ = 0.2, fixed β = 0.1 (b) κ = 0.2, fixed α = 0.4
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(c) κ = 0.02, fixed β = 0.01 (d) κ = 0.02, fixed α = 0.4

Figure 15: Sensitivity to κ.
(a) Blue: α = 0.4, γ = 0.2, Red: α = 0.2, γ = 0.1, Yellow: α = 0.1, γ = 0.05.
(b) Blue: β = 0.15, γ = 0.3, Red: β = 0.1, γ = 0.2, Yellow: β = 0.05, γ = 0.1.
(c) Blue: α = 0.4, γ = 0.2, Red: α = 0.2, γ = 0.1, Yellow: α = 0.1, γ = 0.05.
(d) Blue: β = 0.15, γ = 0.3, Red: β = 0.1, γ = 0.2, Yellow: β = 0.05, γ = 0.1.

Let us now study how the explorative ability of models can be used by crisis
managers who have the responsibility to take decisions about the strategy to reduce
the damages generated by the spread of the infection. This additional investigation
is motivated not only by biologists and clinicians, but also by economists who are
charged with studying the complex interaction between the pandemic and socio-
economic systems. It is a delicate task which has to balance human safety on one
side and the consequences on the wealth distribution over the society on the other.
Accordingly, let us focus on the strategy to plan firstly the lock-down deemed to
control the pandemic evolution and subsequently lock-open to activate production

56



and marketing systems.
In more detail, two key variables play an important role, namely the selec-

tion of the locking and lock-open times T` and Td , respectively, as well as the
related intensity of the actions represented by the contagion coefficients α` and αd ,
respectively. The following specific case studies can be simulated by the model:

• T` is the lapse of time, after the discovery of the infection, at which locking
behavioural rules are imposed, corresponding to α` with the aim to keep the
number of infected people under a threshold level.

• Td is the lapse of time from T` to impose less restrictive locking rules
(locking-down) corresponding to αd > α`, also in this case with the aim of
keeping the number of infected people below a threshold level.

Figure 16 presents a simulation to investigate the influence of the up-locking
time, namely the delay to apply the up-locking, on the subsequent dynamics.
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Figure 16: Varying locking times. We takeT` = 100, 200, 300, and fixed lock-open
time Td = 1200. α = 0.4 for t ∈ [0,T`) ∪ [Td,Tmax] while α = 0.25 during the
locking interval.
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Figure 17 studies the influence of the lock-down time. Simulations show how
delaying Td reduces the peak, but increases the time interval of the persistence of
the infection.

T
l

T
1

T
2

T
3

2000

Time

0

0.005

0.01

0.015

0.02

0.025

0.03

In
fe

c
te

d
 p

o
p

u
la

ti
o

n

T
1
=900

T
2
=1200

T
3
=1500

Figure 17: Varying de-locking times. We take a fixed locking time T` = 300, and
three different lock-open times Td = 900, 1200, 1500. α = 0.4 for t ∈ [0,Tl) ∪

[Td,Tmax] while α = 0.25 during the locking interval. Notice that the three curves
coincide until the first lock-open time, and are consequently represented in black
in that interval.

Figure 18 studies the influence of the lock-down level at fixed values of Td and
T`. As expected, simulations show how a high level of lock-down can generate
high level peaks. persistence of the infection.

The task of crisis managers consists firstly in providing the strategic plans
to reduce and achieve effective values of α` and T`. Subsequently, the problem
consists in referring αd to Td . The strategy depends on a variety of social and
political variables which go beyond the aims of our paper. Simulations delivered
in Figures 16–18 do not cover the whole variety of possible case studies. An
exhaustive study can be, however, developed under the direct requirements of
crisis managers. Therefore, we simply claim that modelling and simulations
provide support to decision making, while the overall systems approach shown in
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Figure 18: Varying the de-locking value αd . We take fixed locking and lock-open
times Tl = 300 and Td = 1200, respectively. α = 0.4 initially for t ∈ [0,Tl) then
reduced to α = 0.25 during the locking interval and finally we consider three
different lock-open values αd = 0.3, 0.4, 0.5. Notice that the three curves coincide
until the lock-open time, and are consequently represented in black in that interval.

Figure 14 leads to study of all different interactive dynamics which appear in the
system under consideration.

Bearing all of the above in mind let us now propose a forward look to research
perspectives by selecting, according to the authors’ bias, five key problems which
are presented in the following, mainly focusing on mathematical topics with the
aim of building a bridge between mathematics and biology. However accounting
for the hints, warnings and forward looks on the perspectives proposed in Section 6
focused also on the interaction between economic strategies and social dynamics.

Indeed, it is not surprising that economists have been induced to develop a
critical analysis on the strategies that governments might develop whenever they
account for future scenarios and not simply for present situations. As mentioned
in Section 1, the event studied in our paper cannot be classified straightforwardly
as a “black swan”, since it could have been predicted, and indeed was predicted by
some, at least up to certain levels. Mathematics offers general explorative models
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that can depict, via computational simulations, the overall collective dynamics
accounting for the possible actions that the science of medicine can offer. This
contribution does not solve the problems of biology and cannot straightforwardly
lead to devices of artificial intelligence, but it can help clinicians to develop a care
strategy by offering them additional information to be used alongside their own
clinical experience.

Reasonings on the key problems take advantage of the fact that our approach,
which does not claim to be exhaustive, appears to be sufficiently flexible to include
new specific features motivated not only by biology, but also by economics.

The presentation of our critical analysis refers to the blocks of Figure 14
and looks ahead to perspectives to be developed within the multidisciplinary and
multiscale framework proposed in our paper (KP – Key Problem).

KP 1 - Virus progression and immune competition: This key problem refers
to the dynamics inside each individual (Block 2). The modelling approach of
our paper has already introduced some important features of the system under
consideration. For instance, progression of the virus by levels which correspond
to hospitalization - followed bymedical care - up to the extreme level corresponding
to death. The competition between the virus and immune system is also treated
accounting for the heterogeneous reaction ability of patients.

The output of simulations is definitely consistent with the systems vision, but
further refinements of the model of the dynamics in Block 2 should be developed in
order to contribute to account for the actions of medical care which refer to Block
5. Focusing on the objective of designing models with enriched descriptive ability,
we remark that the main source towards this development is the literature cited in
Sections 4 and 5, by which we can learn about firstly about the virus dynamics,
subsequently the mechanics of contagion, and finally the different sub-populations
which play the game and the actions exerted by them. This literature also indicates
that the biological phenomena related to this specific competition are not fully
understood, see [39].

Despite this correct statement, we observe that the model of the in-host dy-
namics, corresponding to Eqs. (3.3)–(3.5) by the dynamics depicted in Figure 3,
is sufficiently flexible to include a more advanced interpretation of biological re-
ality. In addition, further dynamics might be taken into account, for instance that
by which the virus chases for foraging and attaches to cells of the lung tissue to
expand by proliferation which ends with further destructive actions over the lung
tissue. Analogous care should be focused to model the foraging cells offered by the
host lung which might damage the overall mechanics of the lung in the breathing
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dynamics [36].
An additional, important refinement consists in subdividing the overall pop-

ulations according to age, social and physical state. This subdivision should be
useful not only to refine the modelling of interactions, but also to contribute to
the decision strategy of crisis managers concerning locking, hospitalization and,
social support in general.

As mentioned, the development of the in-host modelling can take advantage of
Sections 4 and 5, starting from their contribution to understanding virus mutations
by which SARS–CoV–2 is responsible for COVID-19. A pioneer paper devoted to
the modelling of virus mutations followed by a learning dynamics can be found
in [51]. This paper provides some ideas to be developed towards a modelling
approach to depict the complex mutation-learning dynamics specifically referred
to COVID-19.

KP 2 - Medical care: The dynamics of progression of the pathology for hospi-
talized patients has not been explicitly treated in our paper as the model simply
describes how hospitalization can be related to a level of the pathology which
cannot be cared by home confinement. The model computes the flow of infected
people towards hospitals and compares it with the effective capacity of them in a
given territory. The model also depicts different scenarios related to the different
levels by which hospitalization is demanded.

This topic deserves further attention towards a detailed study of the role of
medical cares localized in Block 5 of Figure 14. The modelling approach is not a
straightforward generalization of that developed in Block 2 as it requires a detailed
modelling of therapeutical actions. Hence it requires additional interdisciplinary
work from the medical sciences. The representation of Figure 3 is still valid, but
progression of the immune system and regression of the virus should be related
to well-defined medical actions. The contents of Section 4 and 5 contribute, as
mentioned, to model some of the possible therapeutic actions.

KP 3 - Clustered contagion, heterogeneity and monitoring: As argued in Sec-
tion 6 above, the contagion (or not) develops within and across network structures
which affect who is in contact with whom, for how long, etc. A straightforward
development ought to address the clustering of interactions in structured spaces -
e.g. factories, schools, hospitals, elderly residences, families in primis. It could
well be for example that above some levels of diffusion, confinement does increase
the spread of the disease in that it confines the interactions but increases their in-
teraction rates. Additionally, a necessary extension entails the account for intrinsic

61



heterogeneity among agents, e.g. young versus old, healthy versus affected by
previous pathology, based in areas with clean versus polluted atmosphere. Finally,
in terms of the medical treatment and crisis management, early detection, as home
diagnostics by GPs, and continuous monitoring might allow to overturn congestion
in hospitals.

The model already accounts for heterogeneous behaviours of individuals, but it
does not yet refer to the aforementioned features. Accounting for them is possible
within the framework of the model technically firstly by specializing the overall
population into a variety of subsystems and subsequently by referring them to a
network of aggregation sites. The simulation by agents proposed in [124] moves
precisely towards this target with the aim of providing a broad variety of scenarios
to be used by crisis managers. However, it cannot be naively hidden that the price
to pay is an higher level of complexity somehow related to the calibration of the
model treated in the next key problem.

Recent empirical investigations have shown that a key role in the in host
dynamics is exerted by the initial virus load in each individual which might be
induced by repeated contacts, e.g. affecting medical staff in hospitals, or simply
by lack of awareness to the risk of contagion. Therefore, further studies should
be addressed to derive models where the modelling of the contagion rate includes
an additional information on the aforementioned virus load. The main variable in
charge of the modelling appears to be the awareness to contagion risks which can
contribute to deeper vision of a lock down strategy. This strategy is not simply
related to opening and closing of areas of possible aggregation, but also to the care
put on physical distancing and protection.

KP 4 - Calibration of models: This key problem refers to the identification of
the parameters, since only if the said parameters can be properly assessed can
the model be used for predictive investigations. This specific aspect of modelling
induces a search for a balance between enriching the complexity of the model
and the difficulty of tuning models with an excess of parameters. A mathematical
model has been proposed in Subsection 3.1 corresponding to the flow chart in
Fig. 2, block i = 2, and the visualization of the progression dynamics and immune
reaction shown in Fig. 2, block i = 2, as well as the visualization of the progression
dynamics and immune reaction shown in Fig. 3. The model uses the following
parameters: α modelling the risk of infection related to the level of confinement;
β referred to the ability of the virus to progress; and γ modelling the the ability
of the immune system to induce regression of the virus. These parameters have
been compacted in the key number κ. In addition, the model accounts for the
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heterogeneous distribution in the population of the aforementioned ability which
can be roughly related to the age of the population.

Some recent research achievements can contribute to the tuning of specific
parameters. A valuable example is the probabilistic study of contagion risk devel-
oped in [41] corresponding to different environmental conditions and typology of
interactions. Simulations have been developed with explorative aims, namely by a
sensitivity analysis of the dynamical response depending on the parameters of the
model. This output has shown to be useful to crisis managers towards the decision
process about the possible strategies. An example has been the study of the up-lock
and lock-down strategy by simulations which have shown how far the system is
sensitive to closing-opening plans and have shown how a wrong decision might
lead to disasters. An exhaustive sensitivity analysis might definitely contribute to
the design of an artificial intelligence system.

KP 5 - Dynamics over a globally connected world: This topic may be the most
challenging key problem and research perspective. It refers to Blocks 6 and 7,
where the dynamics occur involving both healthy and infected people. Some
indications have been given towards modelling and simulations accounting both
for the dynamics in complex venues and for that involving transportation system.
The full development of this hint leads to the completion of all the details of the
overall systems approach, where the dynamics in each block contributes to define
the global dynamics in the world.

We are aware that the interdisciplinary horizons should be enriched involving
additional experts in various research fields, e. g. medicine, informatics, physics
and various others. Indeed, we simplywish that our paper is a very first step towards
this forward-looking scientific dialogue. Therefore all reasonings proposed in this
section allow us to go back to the key target posed at the end of Section 1 by
revisiting the quotation, given in the last part of the section, by the following
conclusive remarks.

The key target of this paper has been the design of a multiscale mod-
elling approach suitable to produce simulations mainly with explo-
rative ability. This objective has been pursued all along the paper
by mathematical tools of the kinetic theory of active particles along a
systems approach suitable to account of the dynamics and interactions
in blocks sketched in Figure 14.
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The systems approach and the multiscale vision appear firstly in the
specific models in each block, where the modelling needs the use more
than one scale, and subsequently in the modelling of interactions
between blocks.

The critical analysis focused on the key problems has shown how
the various ingredients of the approach can be further developed and
improved. This remark motivates further research activity to update
the models of each block shown in Fig. 14. This means that we
consider our paper a receptor of future scientific contributions from
the scientific community somehow motivated also by individual and
social care.

Finally, going back again to mathematical topics, we recall that, concerning
the modelling of smallpox, Daniel Bernoulli wrote (to Euler) [55]:

Dolus an virtus quis in hoste requirat! [135] (‘What matters whether
by valour or by stratagem we overcome the enemy?’)

Concerning COVID-19 the correct stratagem, we believe, is to develop a novel
multiscale mathematical framework informed bymultidisciplinary data as outlined
in the current paper. The current “crisis” is presenting us, and all mathematicians,
with an opportunity to develop new mathematical theories, ideas and techniques,
not only to shed light on the spread of pandemics, but also to further develop the
mathematics itself.

It is perhaps fitting to close this paper with the final words of the visionary
talk by David Hilbert in 1900 before the opening of the Mathematical Congress of
Mathematicians in Paris [72, 73, 74]:

We also notice that, the farther a mathematical theory is developed,
the more harmoniously and uniformly does its construction proceed,
and unsuspected relations are disclosed between hitherto separate
branches of the science. So it happens that, with the extension of
mathematics, its organic character is not lost but only manifests itself
the more clearly. . . . The organic unity of mathematics is inherent
in the nature of this science, for mathematics is the foundation of all
exact knowledge of natural phenomena. That it may completely fulfil
this high mission, may the new century bring it gifted masters and
many zealous and enthusiastic disciples.
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