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Abstract

This report aims to investigate the possibility that policies for encouraging

industrial exploitation of basic research may hamper basic research itself. We

focus on the case of top scientists as they are very active in producing academic

knowledge and commercialising their research output. The report contains

three main parts. First, we analyse the time evolution characterising the patent

activities of top scientists. Second, we produce abundant descriptive evidence

on different dynamics characterising academic publishing of pure scientists

and scientists-inventors in the field of biosciences. Third, we carry out patent-

paper-pairs analysis to detect the effect of knowledge privatisation on follow-up

scientific knowledge in the specific case of cancer research.
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1 Introduction

The importance of scientific knowledge for inventive activities in modern economies does not

need much elaboration. One of the first works claiming the paramount role of scientific knowledge

for more applied stages of the innovation process is the famous report by Vannevar Bush (1945):

Science: the endless frontier. The author is generally identified within the academic literature as

the ”father” of the so-called linear model of innovation. This model suggests that the innovation

process originates from publicly-funded basic science than flows to applied research and subse-

quently to production and diffusion. This sequential dimension of the linear model has prompted

many critiques as the model, in many instances, appeared as an over-simplistic characterization

of innovation processes (Kline, 1985), while neglecting possible non-linearities and feedbacks in

the interactions between actors such as universities, firms and government (Etzkowitz and Ley-

desdorff, 2000). Furthermore, the division of labour between public institutions conducting basic

research and private companies focusing only on applied research is not clear-cut. For instance,

the search activities of firms, in particular those related to the consolidation of absorptive capacity,

have provided significant contributions to scientific developments (Fleming and Sorenson, 2004;

Gambardella et al., 1995; Cohen and Levinthal, 1989). These activities represent an important link

between corporate science and the scientific community (Cockburn and Henderson, 1998; Rosen-

berg, 1990). Remarkably, some recent evidence suggest that the relevance of corporate science for

scientific development has been decreasing over time (Arora et al., 2015).

While the linear model of innovation might be an oversimplification of the innovative process, it

has the merit to place a significant emphasis on the role of scientific development in the innovative

process (Balconi et al., 2010). This primary role has weakened over time, in favour of more emphasis

on the transmission mechanisms from basic scientific development to commercialisation. Since the

1970s, there has been an increasing tendency of criticising governments policies as not sufficiently

effective in promoting the dissemination of publicly funded research to actors who could make use

of it. Contextually, there was concern on universities having little incentives to seek practical uses
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for inventions financed by the governments 1.

The U.S. federal government reacted to this concern in 1980 by establishing the Bayh-Dole Act

to allow universities and other publicly funded institutions to patent and exclusively license the

outcome of their research. There is consensus within the literature that the Bayh-Dole Act fostered

academic patenting and licensing firstly in the U.S. and subsequently, by means of emulation, in

several European countries (Shane, 2004a; Mowery et al., 2001). While in Europe there is not a

single law comparable to the Bayh-Dole act in the U.S, several national laws de facto establish

similar regimes in Europe2. Because of the budgetary cuts that most universities experienced in

the 1990s, these policy changes tremendously impacted on the incentives to commercialise research

carried out within universities (Siegel et al., 2003).

In general terms, the process of science commercialisation implies the embodiment of basic

knowledge into marketable applications. Together with patenting and licensing, other vehicles

for science commercialisation are, for example, start-up companies employing university faculty

(i.e. university spin-off companies) and “soft technology transfer” such as research contracts or

consulting (Grimpe and Fier, 2010).

These changes have stimulated a growing scientific interest in studying both the determinants

and potential impacts on society of this increasing commercialisation of science. As regards the

determinants of more involvement of university faculty in commercialisation activities, the research

has highlighted several key factors. For instance, individual characteristics play a crucial role as

scholars with a high degree of entrepreneurial capacity will be more involved in commercialisation

activity either collaborating with existing ventures or establishing their new business (Clarysse

et al., 2011). Second, the efficiency of universities Technology Transfer Offices (TTOs) is among

the most prominent promoters of academic entrepreneurial activities. In fact, TTOs serve as an

’intermediary’ between suppliers of innovations (university scientists) and those who can potentially

(help to) commercialise them, i.e. firms, entrepreneurs, and venture capitalists (Siegel et al. (2007),

1See “GAO Reports and Comptroller General Decisions: Transferring federal technology Ad-
ministration of the Bayh-Dole Act by research universities” online available at https://www.gao.
gov/assets/230/225671.pdf

2For an overview, see Audretsch and Göktepe-Hultén (2015).
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p. 641). Third, also the location of universities matters as the probability of a venture capitalist

to invest in a new technology sharply declines with geographical distance (Sorenson and Stuart,

2001). Fourth, the presence of star scientists within universities allows overcoming a geographical

distance liability to venture capital as they signal research quality within the institution (Fuller

and Rothaermel, 2012). The notion of star scientist was introduced by Zucker and Darby’s seminal

works (Zucker and Darby, 1998, 1997, 2001), where the authors call star scientists the most pro-

ductive scholars into the field of genetic research. In line with Fuller and Rothaermel (2012), the

copious Zucker and Darby’s research activity indicates that links between academic knowledge and

commercial applications considerably increases in presence of star scientists. Following this point,

star scientists are an interesting group to focus on when interested in detecting newly emerging

trends in the generation of scientific knowledge and its possible commercialisation.

As regards the effect of more involvement of university faculty in commercialisation activities,

many scholars agree that the phenomenon is associated with an improved level of consumer welfare

as the society can benefit from the output of basic research only in case this is converted into

marketable products or services (Bornmann, 2013; Shane, 2004b). Nevertheless, concerns arise

about the possibility of distortion of the direction of basic science (Shane, 2004b). First, universities

can deviate from their original mission accepting compromises with basic academic values, tempted

by the possibility of profiting from their research. This could trigger the occurrence of conflicts of

interest (Bok, 2009). Second, the introduction of an economic reward (in addition to the wage)

may lead to a distortion in terms of scientists’ incentive to innovate. Several studies show that

extrinsic rewards can undermine intrinsic motivations traditionally stimulating a taste for free

scientific science (Deci et al., 2001; Stern, 2004; Murdock, 2002). Third, while public and proprietary

knowledge were characterised by different means of appropriability, the current tendency of making

basic knowledge closer to the market also leads to an overlap of appropriability mechanisms. The

main concern is the likelihood of reducing access to basic scientific research when this is protected by

formal IPRs leading to a reduction in follow-up scientific research that relays on recombination and

exploitation of exiting pieces of knowledge (David, 2004; David et al., 2000; Heller and Eisenberg,

1998; Murray and Stern, 2007).
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This report seeks to assess how the generation of basic scientific knowledge has been affected

by the emergence and consolidation of a new policy regime with a growing emphasis on the com-

mercialisation of research findings of universities and other public research organisations. While

most of the literature focuses on the direct effect of science commercialisation on consumer welfare

(Bornmann, 2013; Shane, 2004b), we underline potential drawbacks of this tendency on top-level

basic research. Given the undeniable importance of basic research for practical applications, a

negative result would hint to a possible long-term detrimental effect on social welfare, albeit an

indirect one.

1.1 Structure of the report

We analyse this issue using different sources of data to deliver both descriptive and econometric

evidence. This report has three main sections.

Section 2 analyses the trends characterising patent activities of top scientists. As already

explained, top scientists are the group of academics that simultaneously contribute the most to

both basic research and to the process of its commercialisation. We match data on top 1% scientists

(i.e. Highly Cited Researchers (HCR)) released by Clarivate Analytics and patent data (retrieved

from the EPO-PATSTAT Database) to obtain useful information on top scientists patent activity.

In section 3, we restrict the analysis to the field of biology and biochemistry as these are among

the areas that mostly exploited the practice of protecting pieces of basic research with patents.

After identifying top scientists who also appear as patents’ inventors, we retrieve all the useful

information about their academic publishing from the ISI Web of Science Core Collection database,

and we produce abundant descriptive evidence on different dynamics characterising pure scientists

and scientists-inventors.

Finally, in section 4 we focus our attention on the effect of knowledge privatisation on follow-up

scientific knowledge in the field of cancer research. We use patent-paper-pairs to precisely identify

pieces of knowledge disclosed by both scientific publications and patents. Then we set up an

econometric model, as firstly proposed by Murray (2002), to isolate the effect of the patent’s award
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on the rate of the follow-up stream of knowledge generated by the original paper.
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2 Top scientists’ patenting trends

This section provides descriptive evidence on the dynamics of patenting and publishing activities

carried out buy most productive scientist (i.e. the top scientists) in 2018. The role of market

mechanisms in shaping the research agenda of universities and other public research organizations

has drastically increased starting from the 1980s’, and top scientists are primarily involved in this

paradigmatic change of conceiving basic research.

2.1 Data construction

Clarivate Analytics3 yearly publishes a list of the most influential authors across different scien-

tific fields. These authors are the ones whose scientific production has received the highest number

of forward citations (top 1% per each scientific field) within the year. For this analysis, we consider

the top scientists listed in 2018 Highly Cited Researchers report (HCR2018) released by Clarivate

Analytics. The report includes 6,021 top scientists working on 22 distinct research fields. Table 1

shows the list of all the scientific fields included in HCR2018, the number of top scientists across

fields and the share over the total for each category. The shares vary between 1.49% (Mathe-

matics) and 4.32% (Chemistry), with the exception of Cross-Field which includes scientists whose

contribution is not circumscribed within a unique field.

Table 2 and table 3 shows the top 5 countries and affiliations of these top scientists. The largest

share (43.4%) of top scientists are located in the United States, followed by the United Kingdom,

China, Germany and Australia, all with a percentage below the 10%. Interestingly, not all the top 5

affiliations are located in the United States. Table 3 shows that Harvard Universities and Stanford

Universities are the two institutions with the highest number of affiliated top scientists, followed by

the Chinese Academy of Science, the Max Planck Institute, and the University of Berkeley.

To study the patenting activity of these top scientists, we match their names to the inventor

names contained in the EPO-PATSTAT database (Version Autumn 2019)4. From this database,

3Clarivate Analytics was formerly the Intellectual Property and Science division of Thomson
Reuters. This company commercialises the Web of Science database used in this report.

4We perform the matching using the Stata function reclink and we adopt a conservative approach
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Table 1: Scientists distribution across fields

Scientific Field Num of Scientists Share

Agricultural Sciences 158 2.62
Biology & Biochemistry 231 3.84

Chemistry 260 4.32
Clinical Medicine 490 8.14
Computer Science 97 1.61

Cross-Field 2007 33.33
Economics & Business 96 1.59

Engineering 204 3.39
Environment/Ecology 185 3.07

Geosciences 183 3.04
Immunology 146 2.42

Materials Science 207 3.44
Mathematics 90 1.49
Microbiology 147 2.44

Molecular Biology & Genetics 248 4.12
Neuroscience & Behavior 195 3.24

Pharmacology & Toxicology 161 2.67
Physics 210 3.49

Plant & Animal Science 221 3.67
Psychiatry/Psychology 154 2.56
Social Sciences. general 210 3.49

Space Science 121 2.01

Total 6021 100
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Table 2: Top 5 Countries

Country Num of scientists Share

United States 2611 43.36
United Kingdom 546 9.06
China Mainland 481 7.9

Germany 358 5.9
Australia 244 4.05

Table 3: Top 5 Universities

Affiliation Num of scientists

Harvard Univ 186
Stanford Univ 100

Chinese Acad Sci 91
Max Planck Soc 78

Univ Calif Berkeley 64
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we retrieve all the granted patents at the United States Patents and Trademark Office (USPTO).

2.1.1 Descriptive analysis

Overall, we find that almost half of the top-scientists (49.5%) is a scientists-inventors as it has

at least one patent. On average, our scientists-inventors have 11.9 patents, whereas the median is

4.

Figure 1 shows the evolution of the number of patents invented by at least one top-scientist

between 1985 and 20155. The graph indicates an overall increase in the patenting activity of scholars

that are considered the best performers in conducting basic research. However, we can notice that

during the first decade of the 2000s, the number of patents is rather stable.

Figure 1: Time evolution of top scientists patenting
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Figure 2 shows a similar graph for the four categories that mostly exploit the practice of

requiring the score of matching is at least 99%.
5We include data only up to 2015 to avoid data truncation as we use granted patents. Since the

patent lag grant is on average of 4.5 years, including more recent periods would lead to a structural
distortion.
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patenting basic research. In accordance with the literature, our data show higher rates of academic

patenting for Physics, Material Science, Chemistry and bio-sciences (Biology & Biochemistry). The

graph suggests that these categories display similar patterns, both as regards the magnitude of the

phenomena and trends. The graph also reports the time evolution for two other categories which

have the most significant number of patents. The first one is the Cross-field category that refers

to scientists-inventors whose scientific contribution is not circumscribed within a unique field. The

second one is the residual one (Other) which includes all patents of the remaining 17 categories.

Figure 2: Time evolution of top scientists patenting across fields
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Using the assignee classification provided by the EPO-PATSTAT Database, we can distinguish

different categories such as private companies, universities, government non-profit institutions, in-

dividuals and hospitals6.

Figure 3 illustrates the time evolution of the share of each assignee type over time which shows a

6For details about this classification see the official EPO-PATSTAT documen-
tation available at http://documents.epo.org/projects/babylon/eponot.nsf/0/

11CE75EDDF734288C125848F0048F533/$FILE/data_catalog_global_v5.14_autumn_2019_

en.pdf
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substantial increase of universities as patent assignees. This trend is consistent with the increasing

incentives universities have to try to profit from their scientific research directly.

Figure 3: Share of Assignee type
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Finally, the innovation literature has used the citation to non patent literature (NPL) as in-

dicators of the contribution of public science to industrial technology (Narin et al., 1997). These

citations to scientific articles measure the proximity of an invention to scientific knowledge (Callaert

et al., 2006) and to more complex and fundamental knowledge (Cassiman et al., 2008). We retrieve

the number of NPL citations for our set of USPTO granted patents from the OECD Patent Quality

Database (version 2020) (Squicciarini et al., 2013).

Figure 4 reports the evolution of the normalised7 number of NPL references reported in scientists-

inventors’ patents. The graph shows an increasing trend up to 2009, followed by a sharp decrease

indicating a shift towards less basic and more commercial innovations.

7The normalisation is carried out by considering patents in the same technological field and filed
in the same year.
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Figure 4: Evolution of Non Patent Literature (NPL) over time
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3 Scientists with and without patents

In this section, we restrict the analysis on the top scientists in the fields of biology and biochem-

istry as these areas mostly exploited the practice of patenting basic research (Holman and Munzer,

2000). We investigate whether different dynamics between pure scientists and scientists-inventors

publishing activity emerge.

Furthermore, we add a temporal dimension to the picture comparing the same top-scientists

variables across two periods: before and after the first patent application year for each scholar. This

analysis further contributes to highlighting how a close link between basic and commercial science

can reshape the dynamics of basic research and influence on scientists attitude and behaviours.

3.1 Data

We retrieve from the ISI Web Core Collection Database all the scientific articles published by

all the top scientists in the biology and biochemistry category listed in the HCR2018. We use

this information to build our variables of interest. First, we measure the scientific productivity of

each scholars counting the number of articles published from 1985 up to 2019. Second, we proxy

their quality employing a standard measure which is the citations received from each publication

(Garfield, 1979; Price, 1965; Posner, 2000), Third, we leverage on the information on articles’ access

status released by the ISI Web Core Collection Database, to construct an original index to measure

scholar’s inclination to disclose research output to the rest of academic community freely. Each

article is classified within one of the following categories depending on the accessibility status:

• Gold access: the author publishes in an online fully open access journal, and a license for

reuse and distribution is implicitly provided;

• Green access: the author publishes into a non-open access journal, but then he self-archives

a copy in a freely accessible institutional or specialist online archive known as a repository,

or on a website. Also in this case, articles are accompanied by a license;

• Bronze access: the author publishes into a non-open access journal and he self-archives a
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freely available copy of the paper into an institutional or personal repository. However,

differently from the Green access case, Bronze open access does not provide a license. That

means the publication is free to read, but it cannot be reused and distributed (for example

in presentations or course material);

• Close access: the author publishes in a non-open access journal, and no freely readable copies

are available.

Aggregating all these information at scientist level, we can proxy their attitude towards a more

open scientific paradigm.

3.2 Results

The number of top scientists in the Biology & biochemistry scientific field is 231 and 116 of

them have invented at least one patent. The average number of patents for scientists-inventors

belonging to this category is 11.7. The average number of publications, instead, is 369 in case of

scientists-inventors and 107.6 in case of pure scientists.

Figure 5 shows the total number of publications by each pure scientist on the left, and each

scientists-inventor on the right. The figure depicts that scientists who also patent their inventions

publish relative more than scholars who have never patented. While this is in line with most of

the research done (Zucker and Darby, 2001; Fuller and Rothaermel, 2012), results on the quality of

publications differ. In fact, Figure 6 shows that papers’ average quality is comparable across pure

scientists and scientists-inventors.

This descriptive evidence partially contradicts Torero et al. (2001) who predict that the proba-

bility that the scientist conducts joint research with a firm increases as the quality of an academic

star bio-scientist increases.

To measure top bio-scientists propensity to share their scientific results freely, we use data on

the access status of top bio-scientists publications. For each scientist, we build an accessibility index

computed as an arithmetic average of the value (from 1 to 4) assigned to each article depending on

its accessibility status. The highest value 4 is assigned to publications with Gold access, whereas
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Figure 5: Total publications per top scientist
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Figure 6: Average citations per publication
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the lowest value 1 is assigned to publications with Close access. The resulting indicator ranges

between 1 and 4 with higher measures indicating scientists more prone to disclose their research

outcome freely8.

Figure 7 provides an overview on the accessibility index of pure scientists and scientists-

inventors. The figure clearly shows that the index is systematically lower in the case of authors

with at least one patent. This difference indicates that pure scientists not only do not privatize

their research through patents but they freely disclose more to the rest of the academic community.

Figure 7: Accessibility index per scientist
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This final part examines the time dynamics of the same variables concerning the granting of

a patent. As we are interested in assessing what happens after the patent award, we restrict our

sample on the 116 scientists-inventors.

Figure 8 shows the total number of articles published before (on the left) and after the first

patent grant (on the right). The higher number of publications after the patent might lead the

8For instance, if a scientist publishes 10 articles, of which 3 are Closed access (value 1), 4 are
bronze access (value 2), 2 are green access (value 3) and 1 is gold access (value 4). The resulting

index for this scientist is calculated as: Accessibility index = (3∗1)+(4∗2)+(2∗3)+(1∗4)
10 = 2.1
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reader to infer that a patent application boosts academic productivity. However, no control, such

as scientists’ age and period of activity, is included. For instance, the sharp increase observable in

the right panel of Figure 8 may simply be due to a longer career after the post-grant period (i.e.

more extended period in which cumulate publications).

Figure 8: Total publications per top scientist before and after patent
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A different explanation, instead, can be put forward for the quality of publications. As this

measure is computed as the average number of citations received by each scientist, it is not affected

by a scholar’s age and length of the career after the patent. The average number of forward citations

received by each scientist is showed in Figure 9. No substantial differences emerge, indicating that

the quality of research does not increase once the scholar begins to make his innovation closer to

the market.

Finally, as regards accessibility, Figure 10 shows that the propensity to freely disclose academic

production increases after patent application. While Figure 7 showed scientists-inventors being less

prone to publish their articles openly then pure scientists colleagues, this new evidence suggests

that the source of such a behavioural difference resides within the pre-patent period when scientist
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might want to hide relatively more research outcome.
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Figure 9: Average citations per publication before and after patent
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Figure 10: Accessibility index per scientist
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4 Patent-Paper-Pairs

In this section of the report, we turn our attention to a specific case of bio-science, namely re-

search on cancer detection to provide econometric evidence on the effect of patenting on subsequent

scientific development. In particular, we assess whether using intellectual property rights (IPRs)

to protect an innovation disclosed initially on a public platform promotes or hampers future cumu-

lative research activities. Furthermore, we focus on two specific aspects. The first one is whether

the granting of a patent differently affect the research in the same area carried out by different

institutions such as private companies or universities. The second one is whether different actors

might be differently affected by the granting of a patent depending on the degree of applicability

(i.e. closeness-to-the market) of the patented innovation.

The interest for studying the effect of patent granting on the rate of follow-up scientific research

originates from the evidence that while the legal research exemption9 allows researchers to use

proprietary inventions without infringing the monopolistic rights of the patent holder, its real

applicability and scope are quite limited (Dreyfuss, 2004). These limitations have been revealed

in certain high profile decisions such as, for example, the Roche Products Inc v. Bolar and the

Madey v. Duke University. In the first case, the court narrowed the scope of the exemption

hugely indicating that it was limited to experiments “for amusement, to satisfy idle curiosity, or for

strictly philosophical inquiry” and did not extend to use for business reasons. In the second case,

the court specified further that “the profit or non-profit status of the user is not determinative”.

The consequence of these decisions is that scientists and universities could be sued for patent

infringement if they use proprietary technologies in their research and it may lead to a negative

effect on the degree of follow-up scientific research in the same domain. For the scientists not to be

suited, they need to negotiate formal access via licensing agreements. The lower the cost of such

negotiation, the smaller the potential negative effect on follow-up production of knowledge should

be. It is reasonable to think that this transaction cost is different between private and public

institutions. While the first has traditionally been involved into the cross licence market and they

9See Dent et al. (2006) for a review on research exemptions in different OECD legislations.
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operate “at least somewhat efficiently” in minimizing costs (Sampat and Williams, 2019), public

actors may lack of some organizational capabilities needed in engaging in the complex licensing

process (e.g. different budget, less capable university technology transfer offices).

The questions we try to address are:

• RQ1 Which is the effect of granting a patent on further scientific research carried out by

public and private institutions?

• RQ2 Does this effect depend on whether the protected scientific discoveries is applied?

4.1 Methodology, variables and data

To answer the two questions, we build an original dataset of PPP (i.e. patents and publications

with common content) as firstly suggested by Murray (2002). All the granted patents by the

USPTO between 2004 and 2011 in the technological class related to “Detecting cancer” (class

435/6.14) were manually matched to publications included in the WoS (Web of Science) based on

correspondence between inventors and authors, patent application dates and publication period,

patent and paper abstracts. The starting patent sample includes 1,652 patents, of which 373 are

paired to a publication and constitute the set of paired-patents used for the empirical analysis.

Following the identification strategy in Huang and Murray (2009) we can treat the time of patent

granting as an exogenous shock which allows us to measure the effect of patent granting on the

production of subsequent new knowledge (measured as yearly citations to the paired publication)

and to isolate the impact of making proprietary an innovation that previously was public10. A

reaction in the number of annual citations received by the publication after the granting of the

corresponding patents indicates a change in the rate of follow-on public knowledge.

The econometric models we estimate to answer our first research question (RQ1) are:

10See Appendix A.1 for detailed explanation of empirical strategy and econometric model.
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CIT PUBLICi,t = α+ β0PATENT WINDOWi,t+

+β1PATENT IN FORCEi,t + γi + δt + εit

(1)

CIT PRIV ATEi,t = α+ β0PATENT WINDOWi,t+

+β1PATENT IN FORCEi,t + γi + δt + εit

(2)

where CIT PUBLICi,t is the number of citations received by the paired publication i in year

t from publications whose authors’ affiliation is a public research center, and CIT PRIV ATEi,t is

the number of citations received by paired publication i in year t from publications whose authors’

affiliation is a firm. The variable PATENT IN FORCEi,t is a dummy variable that is equal

to 1 for all the years t when the patent associated to the publication i is valid (i.e. in force).

PATENT WINDOWi,t is a dummy variable that is equal to 1 for the year t in which the patent

associated to publication i was granted. Finally, (γi) is the set of paired publication fixed effects,

(δt) is a set of year fixed effects, and (εit) is the error term.

To answer the second research question (RQ2), we add to the previous models an interac-

tion term, between our variable of interest PATENT IN FORCEi,t and the dummy variable

APPLIED KNOWLEDGEi. This variable takes the value 1 if the paired paper i is published in

an applied journal according to the CHI-classification (Hamilton, 2003). In a nutshell, the models

we are going to estimate are:

CIT PUBLICi,t = α+ β0PATENT WINDOWi,t+

+β1PATENT IN FORCEi,t + β2APPLIED KNOWLEDGEi+

+β3APPLIED KNOWLEDGEi ∗ PATENT IN FORCEi,t+

+γi + δt + εit

(3)
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CIT PRIV ATEi,t = α+ β0PATENT WINDOWi,t+

+β1PATENT IN FORCEi,t + β2APPLIED KNOWLEDGEi+

+β3APPLIED KNOWLEDGEi ∗ PATENT IN FORCEi,t+

+γi + δt + εit

(4)

While β1 represents the effect of an enforceable patent; β3 represents the additional effect

related to the degree of knowledge applicability.

See Appendix A.2 for the descriptive statistics of all the variables.

4.2 Results

Table 4 reports the estimation results related to our first research question (RQ1). The co-

efficients of the variable PATENT IN FORCE reported in column 1 and 211 are negative and

significant, indicating that the award of the patent has a negative and significant effect on the

rate of follow-on scientific research by a public institution. In particular, we find a decline in the

expected number of annual citations of about 2.27. Since the average number of citations is 9.657,

this corresponds to a reduction of 23.5% (significant at the 0.01% level). This result confirms the

intuition that “privatization” of formerly freely available knowledge stifles further scientific con-

tribution from public actors. The coefficients of the variable PATENT IN FORCE reported in

column 3 and 4 are negative but not statistically significant, indicating that scientific contribu-

tion by private companies is not affected by the patent granting. These results confirm Sampat

and Williams (2019) intuition about potential differences in licensing efficiency between non-profit

and commercial firms. In particular, while the sudden introduction of “fencing” against scientific

knowledge does not affect its use by commercial firms, it is detrimental to research conducted in

universities and public research centres.

11The models are estimated using both Ordinary Least Square (OLS) estimation with multiple
level of fixed effect (Columns 1 and 3) and Poisson Quasi Maximum Likelihood (PQML) estimation
(Columns 3 and 4)

25



Table 4: Effect of patenting on follow-up scientific research (RQ1)

DEPENDENT VARIABLES: CIT PUBLIC CIT PRIV ATE
(OLS) (PQML) (OLS) (PQML)

(1) (2) (3) (4)

PATENT IN FORCE -2.269*** -0.239*** -0.006 -0.117
(0.660) (0.058) (0.075) (0.121)

PAT WINDOW -1.228* -0.159*** -0.121 -0.290**
(0.619) (0.034) (0.070) (0.102)

PAPER AGE 0.460*** 0.377***
(0.027) (0.048)

PAPER AGE2 -0.051*** -0.060***
(0.004) (0.008)

PAPER AGE3 0.001*** 0.002***
(0.000) (0.000)

Constant 10.960*** 0.550***
(0.394) (0.045)

Observations 4439 4375 4439 3266
R2 0.869 0.644
ll -9484.1 -2206.5

Note: Column 1 and 3 are estimated using a linear model with multiple levels
of fixed effects. Column 2 and 4 are estimated using the Poisson Quasi-Maximum
Likelihood model. Standard errors are reported in parenthesis.
Legend:* p<0.05, ** p<0.01, *** p<0.001
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Table 5: Additional effect of knowledge applicability (RQ2)

DEPENDENT VARIABLES: CIT PUBLIC CIT PRIVATE
(OLS) (OLS)

(1) (2)

PATENT IN FORCE -3.175*** -0.183*
(0.775) (0.0877)

PATENT WINDOW -1.248 -0.154*
(0.660) (0.0747)

PATENT IN FORCE*APPLIED KNOWLEDGE 1.519* 0.311***
(0.634) (0.0718)

Constant 11.46*** 0.596***
(0.421) (0.0476)

Number of observations 4160 4160
R2 0.871 0.649

Note: Estimations are performed using a linear model with multiple levels of fixed
effects. Standard errors are reported in parenthesis.
Legend:* p<0.05, ** p<0.01, *** p<0.001
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Table 5 reports the estimated results related to our second research question (RQ2). The

coefficient of the interaction term reported in column 1 of table 5 is positive and significant. This

result indicates that the negative effect of the patenting can be mitigated if the scientific knowledge

of a publication is more applied. Since the coefficient of the interaction reported in column 2 of

table 5, this result is confirmed for subsequent scientific research developed by private firms.

From a public policy point of view, one of the justifications for the patent system is that

patents encourage disclosure, and more generally, generate rapid and wide diffusion of technical

information on the most recent inventions (Machlup, 1958). In line with this theory, Mazzoleni and

Nelson (1998) suggest that universities may also publicize potentially commercial research through

their patents. In the case of PPP, patent visibility might spill over to publication generating an

“advertising effect”. In our setting, more applied publications might benefit from this “advertising

effect” of patents and result in an increased number of citations. To test this, we use Scopus

data provided by PlumX Metrics12 to retrieve the number of annual accesses to papers to proxy

for the evolution of publication visibility over time. Data availability constrains this check to the

sub-sample of publications paired to a patent granted in 2011 or 201213.

Figure 11 shows the average number of reads received by applied and non-applied scientific

publication in the years before and after the patent grant, and zero is the moment of the patent

award. The figure shows that the visibility of non-applied papers does not change significantly

after the granting of a patent; whereas, the reverse is true for applied publications. Figure 11

confirms Mazzoleni and Nelson’s (1998) intuition about the role played by patents as advertising

mechanisms for the paired publication. Even more interesting is the evident difference in visibility

between the two groups even before the patent granting. This difference suggests a “freedom to

advertise effect”, rather than a simple “advertising effect”. Although the scientific publication

should play an essential role in disclosure, it would seem that the difference in visibility across the

two groups could be driven by the tendency to hide pieces of applied knowledge before the patent

is awarded. The need for hiding vanishes as knowledge becomes protected by a formal IPR and the

12See https://blog.scopus.com/topics/plumx-metrics
13This corresponds to 81 publications (25% of the sample)Data availability constraints is due to

missing values for older periods.
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Figure 11: Visibility differences
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inventor becomes free to advertise his invention with no-risk of copying.

5 Conclusions

The emergence and consolidation of a ”pro-market” policy regime increasingly focused on the

rapid commercialisation of scientific findings has prompted a lively debate on its possible unintended

effects on the research agenda of universities and other public research organizations, as well on

its other potential benefits and drawbacks. So far, most of the literature has been focusing on

the direct effects of this new regime of science commercialization on social welfare (Bornmann,

2013; Shane, 2004b). In fact, consumers can benefit of scientific advantages only in case these are

converted into a practical application. Nevertheless, the key-role of basic long term blue sky research

for the entire innovation process is corroborated by a large amount of quantitative and qualitative

evidence (Bush, 1945; Nelson, 1992). This raises the concern that strong policies for encouraging

industrial exploitation of basic research may lead to shift research priorities of universities and other

public organizations from long term research towards short term applications. In addition, scientific

public knowledge has historically been a not-rival good since after its public disclosure no further

restrictions on its use can be imposed. This lead to concerns that reduced access today can impact

on the rate of follow-up scientific research.

This report focuses on the consequences of basic science commercialisation on basic science

itself. While most of the literature on university-industry relations studies several mechanisms that

make science more easily exploitable by the market; we focus on the role of patenting of scientific

discovery. Traditionally science and technology have been characterised by different institutions

and norms. As regards science, these institutions and norms have been promoting the open sci-

ence paradigm (David, 2004; Merton, 1973; Partha and David, 1994). The pressure to increase

science commercialisation has promoted the “privatisation” of scientific knowledge using patents

and changed the balance towards the openness of science. In this report, we focus on the role of

patenting on top scientists publishing behaviour and on the development of subsequent scientific

knowledge. We chose to focus the analysis on top scientists because of the existing evidence on top
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scientists being very active in producing academic knowledge and commercialising their research

output (Zucker and Darby, 1997, 2001). Furthermore, we gave particular attention to the field of

bio-science as the practice of patenting basic knowledge is widely spread in this area (Holman and

Munzer, 2000).

The report consists of three sections reporting different pieces of evidence.

In section 2 we analysed the trend characterising the patent activity of top scientists. Our

results show that half of top performers scholars are also patent inventors. The attitude to make

proprietary, via patenting, the output of basic research has drastically increased starting from 1980s’.

Besides, we provide evidence that the share of each assignee type over time shows a substantial

increase of universities as patent assignees, consistently with the increasing incentives for universities

to directly engage in the commercialisation of scientific research.

In section 3 we restricted the analysis within the bio-science field, and we investigated whether

different dynamics between pure scientists and scientists-inventors publishing activity emerge.

Also, we explore the possibility that some changes occur after the patent grant. We provided

descriptive evidence that scientists-inventors publish relative more than pure scientists, but no

evidence of better quality research emerges. One important difference is in the inclination of top

scientists to freely disclose research output. While pure scientists are on average more willing to

give an open-access status to scientific production, scientists-inventors become more flexible on

accessibility conditions after the patent award. This result suggests that scholars tend to freely

disclose their scientific production only when a formal IPR protects them.

In section 4 we focus on a specific case of bio-science, namely research on cancer detection

to provide econometric evidence on the effect of patenting on subsequent scientific development.

Using PPP, as firstly proposed by Murray (2002), we showed that granting patents on pieces of

knowledge previously publicly available has a significant negative effect on the rate of follow-up

scientific research. This effect is mitigated (i.e. less negative) when the protected knowledge is

more applied. Also, this result seems compatible with the previously mentioned tendency to “hide”

more research output closer to market before patent grant. In this sense, the granted patent is a

tool that gives scientists a freedom to advertise.

31



All in all, the results provided by this report should stimulate policy makers to consider a

possible unintended and long-term detrimental effect of the current policy regimes favoring science

commercialisation on social welfare alongside the positive direct effect usually evoked within the

literature. In particular, our evidence suggest that there is indeed the serious risk that these policies

will ultimately result in a set of incentives that will determine a major shift in the research agenda

of top scientists from basic to more applied research. If this is the case, a less sanguine and more

sobering approach in the set of public policies that affect the commercialisation of research results

of universities is probably in order.
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A Appendices

A.1 Empirical strategy

To answer our research questions, we developed an econometric model to isolate the effect

of being granted a patent on the rate of follow-on public knowledge. Following the literature

(Price, 1965; Posner, 2000), we use number of yearly citations received by a (paired) publication to

measure follow-on public knowledge. To understand the rationale behind our identification strategy,

we would highlight two points. First, the so-called grant lag identifies the time elapsed between

date of filing the patent application and date of patent award. Since there is correspondence

between patent application and paper publication, the grant lag identifies the period when the

new knowledge is freely available and usable. After a patent has been granted, it becomes risky

(in terms of infringement) for scientists to continue to exploit the knowledge without obtaining a

license. Second, the average grant lag in our sample is 4.5 years with considerable heterogeneity

(σ = 755.23). Figure 12 is a graphical representation of the grant lag distribution in our sample.

The high variation in grant lags allows us to consider award of a patent as an exogenous shock

to the corresponding publication during “its life”. In this setting we can implement a difference-in-

difference model where the annual citations received by papers associated to patents with longer

grant-lags constitute the “control” for citations to a paper associated to a patent with a shorter

patent lag. Figure 13 provides a graphical representation of the identification strategy.
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Figure 12: Distribution of grant lag

Figure 13: Scheme of the patent-paper pair identification strategy
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A.2 Descriptive statistics

Tables A.1 and A.2 present the summary statistics and the correlations, respectively.

Table A.1: Summary statistics

count mean sd min max
CIT PUBLIC 4455 9.657 24.22 0 306
CIT PRIVATE 4455 0.535 1.666 0 28
PAT WINDOW 4455 0.0837 0.277 0 1
PATENT IN FORCE 4455 0.513 0.500 0 1
PAPER AGE 4455 6.170 4.493 0 29
APPLIED KNOWLEDGE 4176 0.459 0.498 0 1
Observations 4455

Table A.2: Cross-correlation table

Variables CIT PUBLIC CIT PRIV ATE PAT WINDOW PATENT IN FORCE PAPER AGE APPLIED KNOWLEDGE
CIT PUBLIC 1.000
CIT PRIV ATE 0.763 1.000
PAT WINDOW 0.023 -0.002 1.000
PATENT IN FORCE -0.022 -0.084 -0.310 1.000
PAPER AGE -0.024 -0.090 -0.091 0.712 1.000
APPLIED KNOWLEDGE -0.043 -0.050 0.024 -0.055 -0.102 1.000
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