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Abstract

This paper represents the first attempt to bridge the evolutionary
theory in economics and the theory of active particles in mathematics.
It seeks to present a kinetic model for an evolutionary formalization of
socio-economic systems. The derived new mathematical formulation
intends to formalize the processes of learning and selection as the two
fundamental drivers of evolutionary systems [7]. To coherently repre-
sent the aforementioned properties, the kinetic theory of active par-
ticles [1] is here further developed, including the complex interaction
of two hierarchical functional subsystems. Modeling and simulations
enlighten the predictive ability of the approach. Finally, we outline the
potential avenues for future research.
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1 Introduction

This paper represents the first attempt to bridge the evolutionary theory
in economics and the theory of active particles in mathematics. It seeks
to present a kinetic model of the evolution of socio-economic systems. The
derived new mathematical formulation intends to formalize the processes of
learning and selection as the two fundamental drivers of evolutionary sys-
tems [7]. Within the framework of an evolutionary interpretation of indus-
trial dynamics, the interplay between these two engines shapes the dynam-
ics of market shares and collectively the patterns of change of industry-level
variables such as average productivity. The learning process derives from
the accumulation of knowledge which evolves together with the patterns of
innovation and imitation, the changes in techniques of production, and in
general the arrival of new technological paradigms. The accumulated capa-
bilities become the marker of each individual firm. The selection process
is the outcome of market interaction, whereby more competitive firms gain
market shares at the expense of less competitive ones.

In economics, a promising account of such dynamics is by means of Agent
Based Models (ABMs), a family of formalizations typically explored via
computer simulations, studying the emergence of aggregate statistical regu-
larities in the evolutionary process stemming from the interaction among a
multitude of agents, characterised by a quite rich phenomenological struc-
ture in terms of what they do and how they interact. Take as an example the
model in [7] which compares different learning regimes in their impact on the
overall functioning of industries. In that paper, we attempt at understand-
ing the interplay between cumulative learning and selection processes to
account for the statistical regularities characterizing firms and industry evo-
lution, e.g. persistent productivity differentials, tent-shaped growth rates,
persistent entry-exit, scaling law of the variance of growth-size relationship.
We do find that the coupling of learning and selection is an extremely pow-
erful generative mechanism of the stylised facts above. We address also the
equivalence between Polya Urns and replicator dynamics representations of
selection dynamics.

This paper explores an alternative route and provides a first system-
atic bridge between the evolutionary approach in economics and the kinetic
theory of active particles in mathematics. Unlike ABMs where interactions
among agents occur by means of behavioural rules, the kinetic theory of ac-
tive particles specifies the probability distributions which govern the form
and the intensity of the interaction process and, as such, the overall drivers
of the dynamics. Drawing upon [1] the current paper substantially extends
the modelling approach. First by using a complete discrete time framework
to better adhere to the description of economic processes, second by intro-
ducing a hierarchy in the topology of the interactions with two functional
sub-systems, a first one independently evolving and a second one endogenous
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to the interaction among entities. In so doing we mean to couple the over-
all hill climbing process driven by innovation and knowledge accumulation,
with the interactive competitive dynamics among heterogeneous entities. As
in [7] we study the interplay between alternative learning regimes in terms
of degrees of cumulativeness and the ensuing selection outcomes.

The remaining of the paper is organised as follows: Section 2 briefly dis-
cusses learning and selection in economic systems, Section 3 first presents
a generalised structure of kinetic theory for two functional sub-systems reg-
ulated by a hierarchical relationship, and second specifies the interaction
mechanisms underlying the processes of learning and selection. Section 4
develops a battery of simulation exercises, confronting the model outputs
with empirical stylised facts in economics. Finally, Section 5 concludes by
discussing further avenues of research.

2 Learning and selection in the evolutionary the-
ory of economic change

Evolutionary theories of economic change identify the processes of idiosyncratic
learning by individual firms and of market selection as the two main drivers
of the dynamics of industries. The interplay between these two engines
shapes the dynamics of market shares and entry-exit and, collectively, of
productivities and size distributions. Firm-specific learning (what in the
empirical literature is sometimes broadly called the within effect) stands for
various processes of idiosyncratic innovation, imitation, and changes in tech-
niques of production. Selection (what is usually denominated the between
effect) is the outcome of processes of market interaction where more “com-
petitive” firms – on whatever criteria – gain market share at the expense of
less competitive ones, some firms die, and others enter.

One of the basic intuition in our whole interpretation is that both learn-
ing and competition processes entail correlation mechanisms which yield as
such systematic departures from Gaussian stochastic processes.

In modern capitalism, business firms are a central locus of the efforts
to advance technologies, develop new products and operate new produc-
tion processes. Thus the knowledge and the procedures underlying each
technology are to a good extent embodied in organizational routines and
other “quasi genetic action patterns” of organizations. Indeed, an emerging
capability-based theory of the firm places the “primitives” of the nature of
business firms in their problem-solving features, that is their abilities to ad-
dress practical and cognitive problems, ranging from, say, the production of
a car to the identification of a malaria-curing molecules.

The approach - fully acknowledging ubiquitous forms of human bounded
rationality, grossly imperfect processes of learning and diverse social distri-
butions of cognitive labour - attempts to identify the distinctive capabilities
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of organizations as emergent from their distinctive ensembles of organiza-
tional routines. And, dynamically, the approach tries to account for the
processes by which organizational knowledge is acquired, maintained, aug-
mented and sometimes lost. Learning regimes might be independent from
the relative position of the firms in the landscape, implying that good and
bad firms are exposed in probability to the acquisition of similar degrees of
knowledge. Alternatively learning regimes might be proportional to the po-
sition of the firm in the landscape, wherein better performing firms acquire
more knowledge than the rest.

Idiosyncratic capabilities and, dynamically, idiosyncratic patterns of learn-
ing by firms are the general rule. In turn, such persistently heterogeneous
firms are nested in competitive environments, which shape their individual
economic fate and, collectively, the evolution of the forms of industrial or-
ganization. Differences in products and in processes of production - and as
a consequence costs and prices - are central features of the competitive pro-
cess in which firms are involved in different ways. Let us call Schumpeterian
competition the process through which heterogeneous firms compete on the
basis of the products and services they offer and obviously their prices, and
get selected - with some firms growing, some declining, some going out of
business, some new ones always entering. Such processes of competition and
selection are continuously fuelled by the activities of innovation, adaptation,
imitation by incumbent firms and by entrants.

In turn, the processes of industrial evolution leave statistical footprints
in terms of industrial structures and firm dynamics. So, for example, differ-
ent learning regimes impact on the selection process, resulting in more or
less concentrated markets. Thanks to massive infusions of micro-data over
the last twenty years, one has begun to identify a few robust statistical prop-
erties characterizing industrial structures, their changes, and performance
indicators. In particular, such stylised facts include persistent heterogeneity
in productivity and skewed size distributions.

In the following we shall present a model which begins to address those
patterns, under minimal phenomenological specifications of behaviours and
interactions. Knowledge is represented as an independent evolving field
which differently hits each firm. It is a metaphor of a growing pool of in-
novative opportunities to which all firms might have access. The learning
dynamics is idiosyncratic and each firm accrues its own capabilities. Se-
lection occurs over an evolving landscape via a replicator dynamics which
favours the most innovative firms and selects out the least innovative ones.

3 The kinetic theory of active particles

The kinetic theory of active particles [1] represents a new and powerful
avenue to formalize the evolutionary traits of industrial dynamics. This
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approach shares with the classical kinetic theory [5] the representation of
a large system of interacting entities by a probability distribution function
over their individual state, e.g. at the microscopic scale. The dynamics is
obtained by equating the time derivative of the probability distribution to
the difference between the inlet and the outlet flux in the elementary volume
of the space of the microscopic states.

This theory has been introduced in [1] to model the dynamics of socio-
economic systems constituted by a large number of interacting entities,
called a kinetic theory of active particles, in short a-particles. [2] and [6]
present an overview of the applications and covered domains in which the
kinetic theory of a-particles has been employed. Unlike standard kinetic the-
ory, the microscopic state is not only identified by the position and velocity
of the particles, but it also includes a vector of additional variables, called
activity, which models the forms of interactions. The whole system can
be subdivided into groups of interest called functional subsystems, in short,
FSs. Additionally, interactions, which in the kinetic theory [5] are governed
by basic principles of classical mechanics, in the a-particles approach are
modelled by stochastic interactions, wherein actors/agents are identified by
probability distributions. In so doing, interactions do not simply involve
individual entities but also collections of them.

Irreversibility of the interaction processes and potential state-dependent
parameters fuel the non-linear nature of the approach, increasing the level of
complexity and calling for a computational analysis. Indeed, diverse types
of behaviors of agents and more generally system complexity [3] might be
appropriately modelled. Theoretical tools of evolutionary games [11, 13,
14, 15, 17] are simple domains of application, but as we shall see here, the
applicability goes well beyond.

In the following, inspired by [2], our mathematical derivation will avoid
mean-field approximations to let extreme behaviors to emerge. Complemen-
tary but different approaches closer to a kinetic theory allowing for Boltz-
mann and Fokker-Plank equations are in [10, 16], while mathematical tools
of statistical-stochastic dynamics are in [12].

The sequential steps of the derivation of the model include:

(1) Representation of the functional subsystems (FSs) involved in the dy-
namics, where FSs are constituted by active particles, and where each FS
expresses one or more functions defined as activities.

(2) Derivation of a mathematical structure suitable to describe the dynamics
of the dependent variables derived in the first step.

(3) Specification of individual interactions by inserting them into the general
mathematical structure derived in the second step.
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3.1 Functional subsystems

In order to characterize the dynamics of learning and selection we introduce
two functional subsystems which are nested into a hierarchical structure:

• Subsystem 1: Evolutionary landscape
It represents the dynamics of learning to which firms are subject to.
It is meant to capture the arrival of new technologies, new ideas, new
organizational practices. It evolves independently from firm interac-
tions, and it follows a continuous growth process. In economic terms,
it represents the endogenous dynamics of the technological frontier.

• Subsystem 2: Endogenous system of interactions
It comprises two distinct level of interactions: one which determines
the advancement of knowledge of each individual firm through the
action of the first Subsystem, the second which entails the competition
in the market arena among heterogeneous firms in terms of knowledge
level.

Formally, we suppose that the system of firms expresses two components
of the activity, namely w ∈ [0,∞) and v ∈ [0, 1], which correspond respec-
tively to the level of knowledge and to the market shares, where v is divided
by the overall size of the market. The overall system of endogenous interac-
tions moves according to the shape of the landscape ϕ(ξ), where ξ ∈ Dξ is
the activity variable modelling the learning action. This support constantly
increases the domain of w and modifies the probability distribution over
this variable so that a scaling of w implies an analogous scaling of ξ. As
illustrated in Figure 1, the growth process of the support is not a transla-
tion (constant shift) but is instead a non-linear process acting in probability,
meaning that, according to the specification, it might differently hit firms
occupying different knowledge positions.

Let us now provide additional details on the scaling problem. Supposing
that at time t = 0, the domain of w is bounded by the minimal and maximal
values wm(t = 0) and wM (t = 0) respectively, a scaled variable can be
introduced:

u =
w − wm(t = 0)

wM (t = 0)− wm(t = 0)
⇒ Du(t = 0) = [0, 1]. (1)

We define the dynamics on the evolutionary landscape as the variation over
time of the domains of the activity variables u and ξ which move from the
initial state to higher values.

In order to positioning each firm, a discrete equally spaced distribution
is used for all variables:

Cu = {u1, . . . , un, . . . , um}, h =
1

m− 1
, m > n, (2)
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Figure 1: An example of an evolutionary landscape

where the initial conditions for the level of knowledge, learning action, and
market share are referred to the collocation {u1, . . . , un}. Nodes for i > n
mark the evolution of the system, while um represents a limit value of the
knowledge which can be reached during each time interval.

We can now proceed to define the variables describing the state of the
system, as follows:

• f = {fi(t) = f(t;ui)} represents the fraction of firms, called i-firms for
each i-level, where i > n ⇒ fi(t = 0) = 0. The evolution dynamics is such
that, for t > 0, fi can reach positive values for i > 0.

• ϕ = γ0 {ϕi} defines the set of the learning actions over the i-firms, where
γ0 is a positive defined constant modelling the rate of the action and ϕi
defines the learning action for each i-knowledge level.

• v = {vi(t)} defines the set of market shares of each i-firm.

The distributions f and ϕ satisfy the probability condition

m∑
i=1

fi(t) =

m∑
ν=1

ϕν(t) = 1 for all t ≥ 0. (3)

3.2 Interaction dynamics, learning and selection

Let us now detail the relevant interactions to define the dynamics of the
system:

1. The model entails a hierarchical structure: the idiosyncratic learning
process, i.e. the dynamics of f , governed by the interaction between
the first and the second FSs, over the variable u, is not influenced by
the market shares, namely by the variable v. The dynamics of the
latter, conversely, depends on the variable f .
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Figure 2: The learning process derived from the interaction with the land-
scape

2. The hierarchical structure entails that both the shape of the proba-
bility distribution over u and the collocation Cu evolve in time, while
the collocation of the learning action follows the evolution of Cu.

Learning
Let us consider the derivation of a general mathematical structure suitable
to describe the dynamics of the probability distribution f based on selection
of nontrivial interactions. According to the kinetic theory of active particles,
the number of firms f = {fi(t) = f(t;ui)} in the elementary volume of the
space of microscopic states should remain unaltered, when subject to firm
activities. In fact, given the interactive structure, firms might move from
one state to another. Some firms might enter new states by advancing
or regressing along the collocation. These movements define inflow and
outflow of firms for each position. Interactions are supposed to be stochastic,
according to the following hypotheses:

• η0 denotes the rate of interactions between firms and learning actions,
supposed to be constant.

• The dynamics is sensitive only to the action at the same level in the collo-
cation and Ah(h→ i) is the probability that an h-firm shifts the knowledge
level from h to i, independently on the level of market share, due to the
interaction with an h-action (see Figure 2).

The following constraints apply to the component of Ah, being the latter
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a probability distribution:

m∑
i=1

Ah(h→ i) = 1, for all inputs. (4)

The inflow into the elementary volume of the space of the activity vari-
ables corresponds to the number (rate) of firms adopting the i microscopic
state, while the outflow corresponds to the number of firms losing such state.
Therefore, the condition of invariance of the volume of the microscopic state
entails that:

∂tfi = µ0

( m∑
h=1

Ah(h→ i)fhϕh − fi
m∑
h=1

ϕh

)

= µ0

( m∑
h=1

Ah(h→ i)fhϕh − fi
)
, (5)

where µ0 = η0 γ0 and where the notation ∂t is used to distinguish the time
derivative of a probability distribution with respect to the time derivative
of a deterministic variable.

This general transition probability can be specified according to the
learning regime one wants to depict. In the following, we shall look at
two alternative learning regimes.

• Independent learning: The learning action acts on the knowledge level
by shifting firms to the next high level i.e. A(i−1)((i − 1) → i), or
Ai(i → (i + 1)), by a transition probability independent from the col-
location i. This assumption yields:

Ai(i→ (i+ 1)) = α, and Ai(i→ i) = 1− α. (6)

By substituting into the mathematical structure (5) we get:

∂tfi = µ0 Γ1i(f , ϕ) = µ0 αfi−1ϕi−1 − µ0 αfiϕi, (7)

where absence of learning action, namely ∂tfi = 0 for all i = 1, . . . , n
implies also ∂tϕi = 0 for all levels of knowledge. The evolution of the
learning action reads:

∂tϕi = γ0 Γ1i(f , ϕ) = γ0 αfi−1ϕi−1 − γ0 αfiϕi. (8)

• Cumulative learning: The learning action acts on the knowledge level
by shifting firms to the next high level i.e. A(i−1)((i − 1) → i), or
Ai(i → (i + 1)), by a transition probability which increases with the
collocation i. This assumption yields:

Ai(i→ (i+ 1)) = α
i

n+ i
and Ai(i→ i) = 1− α i

n+ i
. (9)

9



Substitution into the mathematical structure (5) yields:

∂tfi = µ0 Γ1i(f , ϕ) = µ0 α
i

n+ i
fi−1ϕi−1 − µ0 α

i

n+ i
fiϕi, (10)

The evolution of the learning action reads:

∂tϕi = γ0 Γ1i(f , ϕ) = γ0 α
i

n+ i
fi−1ϕi−1 − γ0 α

i

n+ i
fiϕi. (11)

Selection
Let us now present the selection process according to which firms with

higher values of knowledge increase their market shares at the expenses of
less-knowledgeable firms. The interaction can be specified according to the
following assumptions:

• i-firms gain market shares whenever they interact with h-firms, being
uh < ui, while they lose market shares whenever they interact with
h-firms, being uh > ui. Gains cannot exceed the level v = 1, while
losses cannot go below v = 0.

• The frequency and the intensity of interactions are determined by an
exogenous, positively defined parameter β.

• The gain dynamics depends on β, on the distance ui − uh, on the
available market shares vh of the losers, and on the number fi of the
gainers in each fitness class.

• The loss dynamics depends on β, on the distance uh − ui, on the
available market shares vi of the loser, and on the number fh of the
gainers in each fitness class.

• We introduce the formulation Hij = H(ui−uj), where H is the Heavi-
side function, a dichotomous function which maps non-negative values
into 1 (H(x) = 1 if x ≥ 0) and negative values into 0 (H(x) = 0 if
x < 0).

The assumptions above, while resembling a replicator dynamics, strongly
amplify the selection pressure in the model because of the presence of a
reinforcing effect related to the number of firms in each fitness class. A
synthetic representation is provided in Figure 3.

We then specify the following m-dimensional differential system, present-
ing relative gains and losses, being both terms normalized, where ∂t stands
as above for the time derivative of stochastic variables:
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Figure 3: The competition process
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∂tvi = β (1− vi)

m∑
h=1

Hih · fi · (ui − uh) · vh

m∑
k=1

(1− vk)
m∑
h=1

Hkh · fk · (uk − uh) · vh

−β vi

m∑
h=1

Hhi · fh · (uh − ui) · vi

m∑
k=1

vk

m∑
h=1

Hhk · fh · (uh − uk) · vk

, (12)

3.3 The model

The resulting model is obtained by taking the system of the three differential
equations. Dividing all equations by µ0, which can be inserted into the time
scale, we get:

∂tfi = fi−1ϕi−1 − fiϕi,

∂tϕi = ε1
1

n+ i− 1
fi−1ϕi−1 − ε1

1

n+ i
fiϕi,

∂tvi = ε2(1− vi)

m∑
h=1

Hih · fi · (ui − uh) · vh

m∑
k=1

(1− vk)
m∑
h=1

Hkh · fk · (uk − uh) · vh

− ε2 vi

m∑
h=1

Hhi · fh · (uh − ui) · vi

m∑
k=1

vk

m∑
h=1

Hhk · fh · (uh − uk) · vk

,

(13)

where time has been scaled by multiplying the real time by αµ0, while
ε1 = γ0

µ0
and ε2 = β

αµ0
are parameters.

The structural dimension of this system is 3 · m, it should be solved
for initial conditions for all components fi0 = fi(t = 0), vfi0 = vi(t = 0),
vi0 = vi(t = 0), given for i = 1, . . . , n. Consistency with the model requires
that for i > 0, fi0 = ϕi0 = vi0 = 0.

The hierarchical structure of the model entails the possibility to consider
a special case of absence of learning action. It corresponds to the case ϕ = 0,
whereby only the dynamics of selection and variation of market shares occur,
given the initial knowledge levels.
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4 Simulations

In the following we present a battery of simulation exercises discussing the
model results. We shall focus on the analysis of the evolution of the vari-
ables u and v according to different learning regimes. All simulations are
developed for the same initial conditions, namely:

1. We consider n = 10 FSs corresponding to i-firms each of them char-
acterised by the knowledge level ui, with u1 < u2, . . . < un, where
fi(0) = fi0 is the probability that a firm belongs to the i-th FS at
the initial time t = 0. Each fi can be interpreted as the (normalized)
number of firms belonging to the i-th FS with i = 1, . . . , i = 10. The
initial common market share of each i-th FS is denoted by vi0.

2. Simulations have been undertaken using the parameter values η0 =
µ0 = γ0 = 1, α = β = 0.1, γ0 = 0.5. We deem t = 1200 a reasonable
time window to allow the model to stabilize.

CASE 1: Absence of learning.
We start by considering the extreme case wherein the learning process is

shut-down. In this case, since no idiosyncratic learning occurs, firms do not
improve or worsen their knowledge level, therefore the number of firms in
each FS does not change over time. In terms of initial conditions, knowledge
and market share distributions are supposed to linearly decay as the level of
relative knowledge increases. These initial conditions are shown in Figure 4.

The market share in each FS is modified by the interaction between
high-knowledge firms, which accrue market shares, and low-knowledge firms
which lose shares. Figure 5 shows the tendency toward a monopolistic mar-
ket structure whereby high-knowledge firms end up taking the whole market.
The robustness of our results are confirmed for a broad range of parameters
values. The latter only affect the speed of the transition dynamics in the
convergence to monopoly. The rate of convergence gets slower the higher
the initial number of high-knowledge firms. The monopoly tendency indeed
confirms the correct model specification: as predicted by the Fisher-Price
theorem, any replicator dynamics yields the sole survival of the fittest. And
the rate of growth of average fitness in the transient depends on its variance
across micro-entities.

CASE 2: Independent learning
Let us now consider the case in which the learning process affects the

individual knowledge of each firm. We suppose the learning dynamics to
act independently from the position of each individual firm, according to a
fix transition probability defined α (see Equation 6). The resulting learning
process entails now a completely different dynamics of the distribution in
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Figure 4: CASE 1: Initial conditions for (a) knowledge, (b) market share,
and (c) learning dynamics

the knowledge space. As shown in Figure 6 as time goes by, the knowledge
distribution changes shape, while the underlying landscape evolves. In fact,
we start by considering m = 20 levels of learning ui, with u1 < u2, . . . < um.
Initially only the first n = m/2 knowledge levels are occupied. Due to the
changing landscape, firms gradually move towards higher levels spanning the
whole knowledge range of 20 levels. Figure 6 clearly shows that not all firms
learn at the same rate. Interestingly, the shape resembles a long left-tail
distribution, with approximately the second half of the support displaying
the higher concentration. The distribution of u is in line with the persistent
differential of productivity distributions observed in reality, which tends to
increase as long as the landscape evolves.

How does the “size distribution” evolve? It does so by following the
learning dynamics. In fact, differently from the monopolistic tendency of the
case above, now market shares in Figure 7 present a left-skewed distribution,
with the highest market share at fifty percent. Indeed, the evolution of the
knowledge landscape is reflected by the selection dynamics which always
operates more severely for the low-knowledge firms which tend to be selected
out by the competition process. Market concentration is reflected into a
relatively skewed distribution.
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Figure 5: CASE 1 - Market shares over time

CASE 3: Cumulative learning
The third case that we consider entails processes of cumulative learning.

This learning regime, also known as Matthew effect or self-reinforcing mech-
anism, implies that who knows more will get in probability more knowledge,
while those who know less will get less knowledge. This case is strongly
in line with the learning regimes occurring in the information economies,
wherein economies of scale and near-zero marginal costs allow an almost
“infinite” knowledge growth (more in [9]). As in the previous case, we start
by considering m = 20 functional subsystems of firms, each of them char-
acterized by knowledge level ui, with u1 < u2, . . . < um. Initially only the
first n = m/2 knowledge levels are occupied. Once the landscape evolves
over time firms move from the bottom to the upper part of the support.
Figure 8 shows the knowledge distribution. This case represents a sort of
leader-laggard dynamics, in which only few high-level knowledge are able
to reach the highest positions, while the remaining part of marginal firms
stacks in lower ones. This results into a bimodal knowledge distribution.

In terms of selection, Figure 9 describes a strongly concentrated market
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Figure 6: CASE 2 - Knowledge distribution over time

wherein two firms possesses almost the eighty and the twenty percent of the
overall market respectively. The rest of the firms get out of the market, with
almost zero market shares. Forms of strong oligopoly are typical of industries
with high front up costs and low marginal ones, cumulative learning (e.g.
the ICT industry), protections by strong forms of knowledge appropriations
as intellectual property rights (e.g. the pharmaceutical industry).

5 Conclusions

This paper has proposed the first systematic attempt to link the evolution-
ary theory of industry dynamics and the kinetic theory of active particles.
Moving from particles to firms, it has studied how the process of learning
has differentiated impact over selection. Our modelling structure allows to
recover a wide array of market configurations, from monopoly, to oligopoly,
to less concentrated ones. In all studied regimes, we do find a persistent
heterogeneous distribution in the knowledge space, coherently with the evi-
dence.
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Figure 7: CASE 2 - Market shares over time

The essence of the approach relies in the tension between micro-scale in-
teractions and description of macro-scale collective behaviours. Additionally
the specification of a hierarchical interactive structure allows to disentangle
the role of each mechanism of the system. Our exercise at this stage was
not intended to provide any normative implication. However, acting on the
micro-scale dynamics essentially means influencing the learning process in
its relationship with an evolving selection landscape. The latter is reflected
into the market arena, shaping the survival of more or less productive firms.
Clearly, the interplay between micro-scale individual learning, and micro-
scale selection, defines the evolving aggregate state of the industries.

The study of the co-evolution of the two processes is crucial to define the
roles and instruments of industrial policies. In fact, our model entails the
possibility to include higher hierarchical layers influencing the evolution of
the landscape, now considered to be independent from any form of interac-
tion. For example, the role of the State as promoter of national systems of
innovations might be studied. Other model extensions entail the introduc-
tion of an imitation factor among firms and the study of the emergence of
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Figure 8: CASE 3 - Knowledge distribution over time

agglomerations. By characterising the ensuing network structure, one might
study the resiliency and stability of alternative configurations.
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Figure 9: CASE 3 - Market shares over time
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