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Abstract 
  
This chapter reviews various technological indicators from innovation inputs to 
innovation outputs, pointing out their strengths and weaknesses and the consequent 
caution that is in order when using these data for economic analysis. It briefly explains 
the theoretical link between innovation and productivity growth and then compares the 
estimated magnitudes of that relationship using the different innovation indicators. 
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1. Introduction 

 
In the short run labor productivity (output per hour worked), capital productivity 
(output per unit of capital stock) or total factor productivity (a weighted sum of outputs 
divided by a weighted sum of inputs) varies over the business cycle because of 
inflexibilities of various sorts: hiring and firing costs, labor regulations, time to build or 
adjustment costs leading to variations in capacity utilization. In the long run, however, 
changes in technology alter technical coefficients – the amount of a certain input needed 
per unit of output - augmenting the marginal productivity of certain factors of 
production or saving on some of them and thereby affect total factor productivity 
(TFP).  
 
For a long time, technological change was considered as exogenous or simply measured 
by a time trend. In the last 50 years, various theories have been developed to try and 
explain the phenomenon of technological change and its impact on economic growth. 
Various indicators have been collected in order to better understand how it occurs and 
what effect it has on the level and the growth rate of TFP. 
 
This chapter goes over various technological indicators - R&D expenditure, patents, 
patent citations, innovation expenditure, the share of innovative sales, count data of 
innovations and various measures of purchased technologies - pointing out their 
strengths and weaknesses and the consequent measures of caution to be taken when 
using these data for economic analysis. It briefly explains the theoretical link between 
innovation and productivity growth and then compares the estimated magnitudes of that 
relationship using the different innovation indicators.  
 
The rest of the paper is organized as follows. First, it reviews the most frequently used 
indicators of technology and discusses their pros and cons. It then examines how they 
have been used to explain changes in productivity, what econometric challenges are 
posed by each indicator, and what have been the major results obtained. It concludes 
with some reflections on the merits of indicators and on the state of knowledge 
regarding the link between innovation and total factor productivity. 
 

2. Technological indicators 
 
It is useful to start with a description of the data sources available to study the link 
between innovation and productivity. I shall cover in detail three types of data, which 
are available in most countries: R&D surveys, patent statistics and innovation surveys. I 
shall say a few words about other data sources, less frequently used or only available 
sporadically in a limited number of countries1.  
 

2.1 Research and Development surveys 
 

According to the Frascati Manual (OECD, 2015), “Research and experimental 
                                            
1 For a more extended discussion on innovation indicators, see Kleinknecht, Van Montfort and Brouwer (2002), 
Hagedoorn and Cloodt (2004), Gault (2010), Gault (2013) and Hall and Jaffe (2018). 
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development (R&D) comprises creative work undertaken on a systematic basis in order 
to increase the stock of knowledge, including knowledge of man, culture and society, 
and the use of this stock of knowledge to devise new applications.” It excludes things 
like routine testing, the analysis of materials, feasibility studies, routine software 
development and general purpose data collection. R&D can be decomposed into basic 
research, applied research and experimental development. It can be performed and/or 
funded by the business enterprise sector, government, higher education and private non-
profit organizations.  
 
Starting with the pioneering work of Griliches and Mansfield in the late 50s and early 
60s (Griliches, 1964; Mansfield, 1965), a large literature has developed in which R&D 
expenditures are considered as investments in a stock of knowledge, which depreciates 
because of physical disappearance (e.g. death of a scientist in case of tacit knowledge, 
fire in case of codified knowledge) or because of obsolescence (as new knowledge 
replaces old knowledge). A large literature has considered this stock of knowledge as a 
determinant of productivity (for surveys of this literature, see for example Griliches 
(1995), Hall (1996), Hall, Mairesse, Mohnen (2010)). 
 
Besides serving as a measure of innovation input, R&D can also be considered as a way 
to assimilate knowledge so as to be better able to absorb outside knowledge. In this 
regard it is like an investment in education to increase the absorption capacity. This dual 
aspect of R&D investment has been articulated by Cohen and Levinthal (1989). 
 
It is not always crystal-clear what is, and what is not, considered as R&D. In the (2015) 
version of the Frascati Manual, five conditions are stated to characterize R&D: it has to 
be aimed at new findings, it has to be based on original concepts and hypotheses, it has 
to be uncertain about the final outcome, it has to be planned and budgeted, and it has to 
lead to results that can be reproduced. For a long time the inclusion or not of software 
in R&D was a matter of discussion. In the new version of the Manual, software is 
included if it satisfies the five criteria just mentioned. Another limitation of R&D is that 
more inputs are needed to innovate than just doing R&D. The Oslo Manual (the latest 
version of which is OECD, 2018) has made a serious attempt in this direction by 
enlarging the scope of innovation expenditure. 
 
The R&D surveys are, unlike the innovation surveys, supposed to cover all R&D 
performers in a country, past observed R&D performers as well as new suspected R&D 
performers because they have for instance applied for R&D tax credits, subsidies, or 
other forms of government support for innovation. R&D statistics are regularly 
collected on a yearly basis. Small firms are underrepresented: first of all, R&D surveys 
are often limited to firms above a certain size in terms of number of employees; second, 
often a more concise questionnaire is sent to small firms; third, in some countries like 
Canada R&D from small firms are provided to the statistical offices by the tax 
department; and fourth, in other countries like the Netherlands the R&D statistics are 
collected in tandem with the innovation surveys in the years the innovation surveys take 
place - to avoid different numbers from two separate surveys – and they only cover so-
called core R&D performers in the years between two innovation surveys. Moreover, 
the R&D statistics only cover formal R&D. Small firms without a formal R&D 
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department might be doing some informal R&D and not bother reporting it to the 
statistical office. 
 

2.2 Patent statistics 
 

In parallel to the literature on the returns to R&D, another branch of studies has 
explored the estimation of a knowledge production function, linking knowledge inputs 
in the form of R&D with knowledge outputs in the form of patents. Patents are used as 
a measure of knowledge output, which can then be inserted in the explanation of other 
economic variables like productivity or market value. The output measured here is closer 
to the notion of invention than to the notion of innovation. Patenting is a measure of 
protection of intellectual property. It may help in bringing new products or processes on 
the market, but it is not a requisite for it, nor is it sufficient to be successful in 
innovating. Moreover patents may be applied for strategic reasons to create entry 
barriers (e.g. patent thickets), to be able to cross-license, or as signals of capability in 
order to attract outside funding.  
Although some earlier studies had already tried to investigate the link between patents 
and productivity, the literature of patents as indicators of inventive performance really 
took off with the NBER work under the direction of Zvi Griliches (see in particular the 
1984 NBER conference volume and his 1990 paper in the JEL).  
 
Patents contain a lot of extra information besides the recording of a patent grant, the 
date and the technology class: applicant, assignee, inventor, number of claims, citations 
to previous patents and publications, priority application date, family information and 
many more (see Nagaoka, Motohashi, Goto, 2010). It is well known that the distribution 
of patent values is highly skewed. Therefore it makes more sense to weigh the number 
of patents somehow, for instance by giving more weight to patents that receive many 
forward citations. 

 
When performing inter-industry comparisons one should be aware that in some fields it 
is more difficult to patent, and that some firms prefer not to patent. The 1987 Yale 
Survey on Industrial Research and Development (Levin, Klevorick, Nelson and Winter, 
1987) and the Carnegie-Mellon University R&D Survey of 1994 (Cohen, Nelson and 
Walsh, 2000) have clearly shown that patents are widely used in fields such as chemicals, 
drugs and computer and not so much in other fields, where firms prefer alternative 
means to appropriate the returns from investing in knowledge, such as being the first on 
the market or developing complex technologies. Similar results of patent concentration 
in a few sectors are reported by Arundel and Kabla (1998) for Europe. Applying for 
patents and especially defending one’s patents against infringement can be costly and 
discourage many firms, especially small firms, from applying for patents. 

 
Patent data have the advantage that they are easily available, for long periods of time, 
and that they contain lots of information on the content of the patented invention, the 
timing of introduction, renewals and termination, the name and the location of the 
assignee and references to prior knowledge. All these pieces of information can be 
useful to infer the private and social value of a patent. The weakness of patent data is the 
selectivity of patenting, the difficulty of merging patent data with other firm-level data 
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(technology classification versus industry classifications, disambiguation for matching on 
the basis of firm names). 

 
2.3 Innovation surveys2 

 
The innovation surveys follow the guidelines of the Oslo Manual. They collect three 
types of information on innovation: innovation inputs, outputs and modalities.  
 
The latest version of the Oslo Manual (OECD, 2018) defines innovation as “a new or 
improved product or process (or combination thereof) that differs significantly from the 
unit’s previous products or processes and that has been made available to potential users 
(product innovation) or brought into use by the unit (process innovation)”. Product 
innovations encompass goods or services that have undergone significant improvements 
in one or the other functional characteristic such as quality, affordability, durability to 
name just a few.  Process innovations refer to improvements in the business functions 
such as increased efficiency, meeting regulatory requirements or cost reductions. The 
Oslo Manual (OECD, 2018) recognizes 6 types of business processes: production of 
goods and services, distribution and logistics, marketing and sales, information and 
communication systems, administration and management, and product and business 
process developments. Organizational and marketing innovations, which were identified 
separately in the third version of the Oslo Manual, are now considered as part of process 
innovations. In contrast to patents, innovation measures the implementation and not 
just the invention of something new. Here also there may be disagreements about what 
is included in this definition. Price changes due to external circumstances, seasonal and 
routine changes in the type of products sold, mere color changes or customization are 
not considered as innovations. Some scholars consider that any change in the way 
business is done is an innovation. There subsists thus a grey area in the definition of 
innovation. 
 
Innovation surveys collect data on innovation expenditure, which comprises besides the 
intramural and extramural R&D expenditure already collected in the R&D surveys, 
engineering, design and other creative activities, marketing and brand equity activities, 
IP-related activities, employee training activities, software developments and database 
activities, activities related to the acquisition of lease of tangible assets, and innovation 
management activities (OECD, 2018).  Unfortunately, many of these items are not (yet) 
collected regularly by all firms, and therefore difficult to quantify and very likely subject 
to substantial measurement errors. Think of employee training activities specifically for 
the production of new products or the use of new machines, not employee training 
activities in general. 
 
The innovation surveys also collect information about the modalities of innovation, such 
as research collaborations, obstacles to innovation, sources of information, innovation 
objectives, presence of government support, or environmental innovations. 

                                            
2 Since 2009 in the United States, the Business R&D and Innovation Survey, conducted jointly by the National 
Science Foundation/Science Resources Statistics (NSF/SRS) and the U.S. Census Bureau, replaces the Survey of 
Industrial Research and Development by adding to the R&D survey some questions related to innovation. It is 
more an R&D survey than an innovation survey. 
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Innovation surveys are supposed to be representative regarding size, industry, and in 
some countries even regional distribution, based on stratified random sampling, above a 
certain minimal size threshold. They are conducted every two years now in EU countries 
(every four years previously) and on a more irregular basis in many other countries. A 
few countries have yearly data (Germany since 19933, Spain since 19904, U.S. since 
2009).  
 
The innovation survey data have certain characteristics that are important to keep in 
mind when using them in empirical research.  First, they are to a large extent subjective 
data: the definition itself of what is an innovation leaves room for interpretation, 
whether a product is new to the firm or new to the market depends on the perception of 
what the relevant market is, some data asked in the surveys are not systematically 
collected by firms (such as training for innovation or the share of sales due to new 
products) and therefore more guestimates than hard data. The likely presence of errors 
in variables in the innovation survey data and the ensuing attenuation bias in the 
estimation of the relationship between innovation and productivity has been formally 
shown in Mairesse, Mohnen and Kremp (2005) and Mairesse and Robin (2017).  
 
Second, contrary to the R&D and patent statistics, few of the data are quantitative to 
reveal something about the extent of the innovation success. Among the various types 
of innovation, there is a quantitative measure only for product innovation, the share of 
total sales due to new products. A few countries have quantitative measures for process 
innovation, namely the share of cost reduction due to new processes. For most 
countries, though, only dichotomous information exists for process innovation. While 
binary variables are less informative than continuous variables, it can, however, be 
argued that the errors in variables problem is less distorting with binary information.  
 
Third, there is a timing problem, in the sense that innovation refers to a three year 
period, whereas the few quantitative variables refer only to the last of the three years. It 
makes for instance little sense to explain the fact that a firm has innovated sometime 
over a three-year timespan by the amount it spent on R&D in the last year of that 
period.  Fourth, there is a potential selectivity issue as some variables are collected only 
for innovators. For example, no data on R&D are collected for firms that do not declare 
to have been innovative. Fifth, it is difficult to conduct panel data analysis with the 
innovation survey data because of the stratified random sampling. Only large firms (e.g. 
above 250 employees; the threshold depends on the country) will be approached in 
every wave. Smaller firms might randomly not be included in every wave. This 
systematic inclusion of larger firms may create a selection bias in the results obtained. 
Sixth, the structure of the questionnaire of the innovation surveys, the wording of the 
questions, the sampling and the mere mandatory nature of these surveys differ across 
countries more than the R&D surveys, rendering the innovation surveys less comparable 
internationally than the R&D surveys. 

                                            
3 The German Mannheim Innovation Panel is managed by the ZEW-Leibniz Center for European Economic 
Research. 
4 The Spanish ESSE (Encuesta sobre Estrategias Empresariales) Survey on Business Strategies has been 
conducted since 1990 by the Ministry of Industry and the SEPI Foundation. 
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A general problem faced when relating innovation indicators to innovation or economic 
performance is the endogeneity of innovation. Some variables that drive innovation 
efforts also drive directly economic performance, and there may be a two-way 
relationship between the two variables. Many other variables contained in the innovation 
surveys may also be subject to endogeneity. Hence, unless the innovation survey data 
can be merged with other statistics or be made into a longitudinal dataset, there will be a 
problem of instrumenting the endogenous variables. 
 
Contrary to patent data, R&D and innovation survey micro data are not as easily 
accessible for reasons of confidentiality. It is therefore difficult to merge innovation 
survey data from different countries to conduct international comparisons, unlike what 
can be done with business register data like ORBIS/AMADEUS from Bureau van Dijk, 
the Business Environment and Enterprise Performance Survey (BEEPS) database from 
the World Bank and the European Bank for Reconstruction and Development or the 
EU Industrial R&D Investment Scoreboard database managed by the Joint Research 
Center of the European Commission. 
 
Despite this long list of challenges that the user of innovation survey data should be 
aware of, these data contain new statistics, which have enlarged our understanding of 
the determinants and the effects of innovation on economic performance, as we shall 
see in section 3. 
 

2.4 Other data 
 
Literature-based innovation counts 
Another measure of innovation output is the literature-based innovation output (LIBO) 
indicator, which counts innovation announcements that are published in trade and 
technical journals (Coombs, Naradren, Richards, 1996, Santarelli and Piergiovanni, 
1996). One of the first to introduce it were Kleinknecht, Reijnen and Smits (1993).This 
indicator offers some advantage compared to the innovations surveys: it is less 
subjective than the innovation outputs from the innovation surveys since it is based on 
published material and verifiable, it gets recorded soon after the introduction on the 
market and not one or two years afterwards, in can cover the small firms better than the 
innovation surveys (as shown by Kleinknecht, 1987), and in principle it could provide 
more details about the innovation itself. It has, however, the disadvantage that 
announcements are to some extent subject to self-selection, confined to product 
innovations, cover tangible goods more than intangible services, focus more on inputs 
and capital goods, are often biased towards major innovations, and are not systematically 
collected and readily available for all countries.  
 
Actually a forerunner of the LIBO count data was the Science Policy Research Unit 
(SPRU) innovation database. This dataset was set up as follows. Experts from industry 
were asked to identify significant technical innovations that were commercialized in the 
U.K. between 1945 and 1983. Firms producing these innovations were then approached 
to provide information about the innovation and characteristics of the firm (Robson, 
Townsend and Pavitt, 1988). This database ultimately led to the development of the 
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Innovation Surveys, which are no longer based on specific innovations but on firms that 
innovate or not. In other words, the Innovation Surveys follow the subject approach, 
collecting information about a particular firm, instead of the object approach, where the 
basic statistical unit is an innovation.  
 
Bibliometrics/scientometrics 
There is a branch of research called bibliometrics/scientometrics that uses publications 
and citations from databases such as Google Scholar, Scopus or Web of Science to 
measure the quantity and the impact of scientific research.  These indicators are used for 
monitoring scientific research output and for measuring productivity of scientific 
research in universities, research labs, individual researchers and scientific fields, or for 
measuring technology transfer or collaborations between research institutes and 
enterprises, more than for explaining the role of innovation in explaining productivity 
variations within and between firms. These indicators can, however, be helpful as 
indirect indicators of the connectivity between researchers or the quality of other 
indicators. To cite one example, Callaert, van Looy, Verbeek, Debackere and Thijs 
(2006) have looked at backward citations to non-patent references in patent applications 
to assess the science-intensity of patents.  
 
Inventor surveys 
The inventor surveys collect data on the inventors obtained from the patent databases, 
e.g. the PatVal Survey for six European countries (Giuri et al, 2007), the RIETI-Georgia 
Tech inventor survey (Walsh and Nagaoka, 2009) for the US and Japan. The aim of 
those surveys is primarily to gather information about inventors such as profiles, 
motivations, mobility, performance, and perceived value of the inventions. Inventor 
survey data have been used as an alternative to patent citations for measuring the value 
of a patent, sources of knowledge and knowledge spillovers. 
 
Market for Technology 
Instead of conducting their own R&D, firms may decide to buy knowhow instead on 
the market for technology. The innovation surveys contain some binary and continuous 
data on the purchase of patents and investments related to new technologies among the 
innovation expenditures. Licensing is another way to purchase outside technologies. No 
systematic data on licensing deals exist. The European and Japanese Patent Offices 
(EPO and JPO) organized a survey of licensing among patent holders in 2007 (Zuniga 
and Guellec, 2009). Arqué-Castells and Spulber (2018) use data on patent trades from 
USPTO, licensing deals from the SEC (Securities and Exchange Commission) filings 
(ktMINE’s licensing database), and cross-licensing data from the SEC forms, as well as 
Google searches, to construct connections in the market for technology. They find that 
when the returns on the markets for technology, which diffuse technological change, are 
internalized, the private and social rates of return on R&D increase substantially, by as 
much as 50% and 100% respectively. 
 
Technology adoption and diffusion 
One way to foster technological change is to develop new products, services or 
technologies, another one is to adopt existing technologies and ensure their diffusion 
throughout the economy. Surveys on the adoption of advanced technologies in 
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manufacturing have been conducted in a number of countries. They do not identify 
transactions and amounts paid, but they identify whether a firm has used a range of 
advanced technologies. Empirical studies examining the link between the adoption of 
advanced technologies and productivity growth in manufacturing conclude that there is 
a positive link between the two variables (e.g. Baldwin and Sabourin, 2004 for Canada, 
Bartelsman, van Leeuwen and Niewenhuijsen, 1998 for the Netherlands).   
 
User innovation 
Firms are user innovators if they develop a process innovation for their own use or if 
they adopt a process and adapt it for their own use. A sizeable proportion of firms are 
user innovators, as high as 54% in high-tech Dutch small and medium enterprises (de 
Jong and von Hippel, 2013). User innovators are more prone than commercial 
innovators to share their findings and the adoption rate of user innovations is also 
higher than adoption rates in general. 
 

3. Innovation and productivity5 
 
In this section, we shall examine what we have learned from R&D, patents, innovation 
surveys and innovation count data regarding the link between innovation and 
productivity. 
 

3.1 Studies based on R&D data 
 

The various indicators of innovation that have been listed above have been used in 
various ways to measure their impact on economic performance at the firm, sector or 
country level. In endogenous growth models productivity growth is in part due to R&D 
efforts that are only undertaken if the costs of engaging in R&D (those can be variable, 
fixed or even sunk costs) do not exceed the returns from doing R&D. R&D generates 
innovation in the form of new intermediate inputs or new consumer goods, the variety 
of which increases productivity or consumer utility. In parallel to this love for variety 
approach, a Schumpeterian creative destruction approach has been developed in which 
new products replace old products because of superior quality instead of just increasing 
the range of products in the market and diminishing the margins made on old products 
(see Aghion and Howitt, 1998, Barro and Sala-i-Martin, 2004). There is also a debate in 
this literature between the contenders of the semi-endogenous and the fully-endogenous 
R&D-based growth models, the former arguing that the returns to R&D are decreasing, 
the latter defending the assumption of constant returns to R&D. Ha and Howitt (2007) 
show evidence in favor of the Schumpeterian fully-endogenous growth models, whereas 
Bloom, Jones, Van Reenen and Webb (2017) illustrate the declining productivity of 
R&D in a number of research fields. Nonetheless, so they argue, endogenous growth 
can survive because of the non-rival nature of knowledge. 
 
Spillovers play an important role in R&D-based growth models. They can be positive as 

                                            
5 Part of this section is based on Mohnen (2018), « The role of research and development in fostering economic 
performance. A survey of the macro-level literature and policy implications for Finland”, report submitted to 
OECD, February 2018. 
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knowledge gets transmitted between agents or over generations or when rents occur 
because of imperfect price discrimination or network externalities. They can also be 
negative because of decreasing returns, duplication, obsolescence or market stealing. A 
number of macro studies based on assumptions regarding these various forces have 
simulated the societal effects of R&D on economic growth. Depending on whether the 
positive or the negative externalities dominate, there is private underinvestment or 
overinvestment in R&D (see Montmartin and Massard, 2005).  
 
Even before these theoretical developments in the modeling of endogenous economic 
growth took place, empirical studies were devoted to estimate the returns to R&D 
starting with Griliches (1964) and Mansfield (1965). The underlying model is an 
extended production function with as additional input the stock of knowledge obtained 
from R&D expenditure. The stock of knowledge depreciates when tacit knowledge gets 
lost for instance with the death of a scientist6 or when through obsolescence new 
knowledge supersedes old knowledge. The idea is to estimate the increment in 
production or value added due to a marginal increase in the stock of knowledge. If this 
marginal productivity remains constant over time, it can also be interpreted as the 
internal rate of return that equates costs and revenues gross of the depreciation rate of 
the stock of knowledge. When multiplying this marginal productivity by the R&D over 
output ratio one gets the elasticity of output with respect to R&D, which multiplied by 
the growth rate of the R&D stock measures the contribution of R&D to output or total 
factor productivity growth in growth accounting.  
 
Spillovers are captured by including as an additional argument in the production 
function the R&D stock accumulated outside of the firm. This is usually done by 
constructing a weighted average of the R&D stocks of other R&D performers (plants, 
firms, sectors, regions or countries depending on the level of aggregation), unless one 
wants to estimate separate spillover sources, which can quickly become difficult to 
identify as the allowed number of sources increases. Various weighting schemes have 
been experimented with depending on the assumed channel of transmission of the 
spillovers: geographical proximities, R&D collaborations, co-patenting, correlations of 
positions in the patent classes or in the lines of business, patent citations, interindustry 
transactions, international trade, foreign direct investment, to name the most popular 
ones. If the outgoing R&D externalities are added to the private rate of return to R&D, 
one obtains a social rate of return to R&D, that is, the return to society at large. 
 
The rate of return to R&D has been estimated in a variety of ways. We briefly list below 
several of the major differences in specification and the possible effects they could have 
on the estimated returns to R&D. For a more thorough and detailed discussion of these 
issues, the reader is referred to the initial presentation of the whole framework in 
Griliches (1979) and to the survey by Hall, Mairesse and Mohnen (2010). 
 
Regarding the specification, most studies have used a Cobb-Douglas production 

                                            
6 Recent work on team capital confirms this loss of tacit knowledge. Azoulay, Graff Zivin and Wang (2010) find 
that the premature death of a superstar scientist reduces by 5% to 8% the quality-adjusted publication record of 
his (her) collaborators. In the same vein, Jaravel, Petkova and Bell (2018) find that the unexpected death of an 
inventor decreases the co-inventors’ earnings by 4% and their citation-weighted patents by 15% after 8 years.  
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function. Some have used a translog or other second-order approximations of a general 
production function, which allow for complementarities or substitutions between R&D 
and other inputs. Some studies have preferred assuming a constant elasticity of output 
with respect to productivity rather than a constant marginal productivity of R&D. 
Estimates seem to be more stable with a constant elasticity specification, implicitly 
assuming a declining marginal productivity of R&D. Some studies have favored a dual 
representation of technology, conditional on variable factor prices and, maybe more 
contentiously, on the exogenous level of production in lieu of the input levels. A system 
of demand equations can then be estimated, which increases the number of degrees of 
freedom. Sometimes a mixture of variable and quasi-fixed inputs is allowed for. A few 
studies have opted for an intertemporal model of decision-making to derive the optimal 
path of knowledge accumulation, which yields the specification of the demand for R&D 
equation. 
 
Regarding the data, the earlier studies used sector or aggregate country data. Nowadays, 
the majority of studies are based on firm data or even on establishment data. At a higher 
level of aggregation, one would expect higher rates of return because of internalized 
spillovers, but this is not systematically the case. Ideally, the traditional inputs should be 
cleared of their R&D component to avoid R&D double-counting (Schankerman, 1981). 
This is rather rarely done at the cost of yielding underestimates of the returns to R&D. 
A crucial element in the estimation of the rate of return to R&D is the assumed 
depreciation rate. At the beginning of this literature, when time-series on R&D were still 
relatively short, a zero rate of depreciation was often assumed to obviate the need to 
construct a stock of knowledge. Later studies constructed R&D stocks assuming 
constant - over time and space - R&D depreciation rates. The latest studies obtain time- 
and industry-specific R&D depreciation rates (Li and Hall, 2017).  
 
The production function or the dual representation of technology has been estimated in 
levels or in growth rates. Estimates are generally higher, more stable and more likely to 
be significant when based on levels rather than growth rates. Most studies are based on 
time-series data, exploiting only the temporal variation, some use only cross-sectional 
data, the more recent studies exploit panel data, where both temporal and cross-
sectional variations can be exploited and individual effects can be controlled for. 
Typically, lower returns are obtained in the within than in the between variation. Some 
studies have controlled for other factors that may affect productivity, such as human 
capital, organizational capital, ICT equipment, R&D spillovers or sector-specificities. 
The returns to R&D tend to drop when these other variables are introduced.  

 
Over the last 50 years, many empirical papers have been devoted to the estimation of 
the private and the social rates of return to R&D (see the survey by Hall, Mairesse and 
Mohnen (2010) and the meta-analyses by Wieser (2005), Koopmans and Donselaar 
(2015) and Ugur, Trushin, Solomon and Guidi (2016)). Despite the large heterogeneity 
in the results obtained, the following seem to be reasonable orders of magnitude. The 
private rate of return on R&D exceeds the normal rate of return and is the 10% to 30% 
range. Estimates of the elasticity of output with respect to R&D are largely consistent 
with those of the rates of return and hover around 0.10. Given these estimates and the 
growth in R&D stock, the contribution of R&D to TFP growth is expected to be in the 
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range of 10 to 15%. The social rate of return exceeds the private rate of return by a 
factor of 50% to 100%. Rates of return are found to be heterogeneous. They are 
generally found to be higher for private than for public R&D and for basic R&D than 
for applied R&D or development. The estimated elasticities are generally higher in high-
tech, i.e. R&D-intensive, than in low-tech sectors (e.g. Ortega-Argilés, Piva and Vivarelli, 
2015) but according to the results reported by Wieser (1979) and Ugur et al. (2016), the 
associated rates of return are not necessarily different between the two sectors. Rates of 
return may differ across countries because of differences in distance to the frontier 
(Griffith, Redding and Van Reenen, 2004), industrial structure or national innovation 
systems (Kokko, Gustavsson Tingvall and Videnord, 2015). Countries may benefit from 
international R&D spillovers. As shown in Mancusi (2008) laggard countries are mainly 
the beneficiaries, depending on their absorptive capacity, whereas technological leaders 
are mainly the source of international R&D spillovers. 
 
The 2008 revision of the National Income and Product Accounts treats R&D as an 
investment and no longer as an expenditure. Fraumeni and Okubo (2005) have focused 
on the contribution of R&D in the new national income accounting. For the United 
States over the period 1961-2000, they arrive, on the expenditure side, at a contribution 
of R&D investment to corrected GDP between 2% and 7% depending on the scenarios, 
and on the income side, at a contribution of the returns on R&D to corrected GDP 
between 4% and 15%. Corrado, Haskel, Jona-Lasinio and Iommi (2013) follow the 
approach of Corrado, Hulten and Sichel (2009) and consider three types of intangible 
assets: (i) computerised information (software, databases), (ii) innovative property 
(research and development, mineral exploitation, copyright and license costs and other 
product development, design and research expenses), and (iii) economic competences 
(brand equity, firm-specific human capital and organisational structure). They have 
capitalised the investments in these intangibles under some assumptions regarding 
deflators and depreciation rates. They find that innovative property (including R&D) 
accounts for a proportion of labor productivity growth that ranges from 4.5% in the UK 
to 12.5% in the US.  
 
Besides the extended production function approach, there are at least three other 
approaches that are worth signaling: the stochastic efficiency frontier, the market value 
and the stochastic productivity residual. The stochastic efficiency frontier estimates both 
the outward shift of the frontier and changes of positions with respect to the frontier. 
Kumbhakar et al. (2012) estimate a parametric stochastic efficiency frontier instead of a 
production function. For a sample of top European R&D investors between 2000 and 
2005 they show that in high-tech sectors R&D mainly shifts out the frontier, whereas in 
low-tech sectors its role is mainly to bring firms closer to the frontier. Many studies have 
also looked into whether valuations of firms in the stock market are related to the 
volume of their R&D capital stocks in publicly traded firms. The underlying model is a 
market value equation that depends on the replacement value times Tobin’s q, which 
depends on knowledge capital (see Griliches, 1990 and Hall, 2000). Although, this 
method can only be applied for publicly traded firms, it has the advantage of including 
expected future returns. Positive effects of R&D have been estimated for many 
countries, although these estimated coefficients are lower than one, suggesting 
overinvestment, insufficient shareholder protection or too low R&D depreciation rates 
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used in the construction of the R&D capital stocks (see Hall and Oriani, 2006). The last 
approach that we want to mention models R&D no longer as a capital stock, which 
affects productivity in a linear and deterministic fashion, but as an investment that 
affects the distribution of total factor productivity. Using this kind of framework, 
Doraszelski and Jaumandreu (2013) find that in most Spanish industries the return to 
R&D is higher, the higher is past productivity, and that the mean expected productivity 
is higher for R&D-performing than for non-R&D-performing firms. The net rate of 
return to R&D varies across industries but averages around 40%, being higher in 
industries where the uncertainty is higher. 
 

3.2 Studies based on patent data7 
 

In principle, the methods used in the previous section could be applied to the stock of 
patents as a measure of the stock of knowledge in lieu of the R&D stock. In this way the 
patent stock could be related to productivity, market value, movements to the efficiency 
frontier or the Markov process governing the stochastic productivity residual. The fact 
that the distribution of patent values is highly skewed, with very few patents being worth 
a lot, militates in favor of using R&D instead of patents to explain TFP or market value, 
because the errors in variable problem is higher for patents than for R&D. Hall, Jaffe 
and Trajtenberg (2005) have compared the effect of R&D, patents and citations on the 
market value of firms and found that a percentage point increase in the R&D/assets 
ratio leads to a 0.8% increase in market value, that an extra patent per million $ of R&D 
boosts market value by about 2%, and an extra citation per patent boosts it by over 3%. 
They also find that the market values are particularly correlated with citations that 
cannot be predicted from past citations. Hence patents count, and especially citations. 
Although they are not as good predictors of market value as R&D, they nevertheless add 
to the understanding of market values. 

 
What has also been examined is the link between patents and R&D, one version of the 
so-called knowledge production function (Griliches, 1990). It has been found that 
patents are correlated with R&D and that there is hardly any lag between the two. Here 
again the relationship is less visible in the within temporal dimension. In the cross-
sectional dimension, the relationship between patents and R&D is higher for small than 
for large firms, because of selectivity (observing the best small firms) and more frequent 
use of informal IP protection in large firms and informal R&D in small firms.  

 
Patents can be very useful for estimating R&D spillovers. There are two ways in which 
this can be done. The first is to measure a spatial correlation of firms in the patent space, 
i.e. the vector positions of firms in patent classes. This idea goes back to Jaffe (1986). 
The idea is that the more firms patent in the same or in close patent classes, the more 
they perform similar research and benefit from each other’s research. The second way 
patents can be used in connection to R&D spillovers is by way of patent citations. 
Citations to previous patents can be considered as proxies for knowledge flows between 

                                            
7 Patent data have been used for other topics than their link to R&D and productivity, like the strategic use of 
patents (pre-emptive patenting, patent trolls, patent litigations, patent thickets), or policies for protecting 
intellectual property (patent length, patent breath, patentability); see Hall and Harhoff, 2012. We shall limit 
ourselves to the use of patents as indicators of innovation and their link to variations in productivity. 
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firms. This approach had been used to estimate spillovers across industries (Scherer, 
1982), countries (Jaffe, Trajtenberg and Henderson, 1993; Verspagen, 1997) or regions 
(Peri, 2005). Patent citations tend to be localized and therefore, if they are supposed to 
reflect knowledge flows, they point to geographical spillovers that decrease with distance 
to the origin. Peri (2005) finds that only 20% of the knowledge generated in a region 
flows out of it even though knowledge flows are much less localized than trade flows. 
 
Using the Google Patent database, Kogan, Papanikolaou, Seru and Stoffman (2017) 
infer the value of patents from the stock market reactions three days after patents are 
issued. A firm’s innovation is measured as the sum of the values of all the patents 
granted to a firm normalized by its size. The authors find that a one standard deviation 
increase in a firm’s innovation is associated with a 2.4% increase in a firm’s revenue-
based productivity, whereas a one standard deviation increase in innovation by a firm’s 
competitors is followed by a 1.7% drop in productivity over five years. At the macro 
level, they find that a one standard deviation increase in macro innovation leads to a 
3.4% increase in TFP growth in the next 5 years. 

 
3.3 Studies based on innovation survey data 

 
With the advent of the innovation surveys, which started to be collected in many 
countries in the early 1990s, it became possible to relate productivity with measures of 
implemented innovation output instead of just innovation inputs. Actually, the 
production function relating productivity to innovation output could be combined with 
a knowledge production function relating innovation input (R&D or innovation 
expenditure) with innovation output. This structural model was first proposed by Pakes 
and Griliches (1984) using patents as innovation outputs, and later implemented by 
Crépon, Duguet and Mairesse (1998), using patents and the share of innovative sales as 
alternative measures of innovation output, in what has come to be known as the CDM 
model. It treats the endogeneity of R&D and innovation output by having an equation 
explaining the amount of R&D, one that explains the intensity of innovation and one 
that explains productivity in growth rates or in levels. Moreover, some firms happen to 
do no R&D and many are not innovative. This selectivity issue is also handled in the 
CDM model using tobit models or Heckman’s two-step approach. The CDM 
framework allows for the use of binary and continuous data for innovation inputs and 
or outputs, and in principle for multiple sources of innovation.  

 
The original CDM model is a recursive model without feedback from productivity to 
R&D or innovation. It may well be that productive firms are more innovative because 
they can afford to finance innovation projects. Several attempts have been made to let 
this happen by introducing past productivity in the innovation input or output equations 
(Baum, Lööf, Nabavi and Stephan, 2017; Raymond, Mairesse, Mohnen and Palm, 2015; 
Cainelli, Evangelista and Savona, 2006). Another generalization of the CDM model 
consists in allowing for lags in the relationships among R&D, innovation and 
productivity, as well as for persistence in innovation and productivity. It is important in 
that case to allow for unobserved heterogeneity so as to avoid spurious persistence. 
Persistence seems to be correlated with the intensity of innovation as it is found to be 
more pronounced for R&D performing innovative firms (Peters, 2009), in high-tech 
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industries (Raymond, Mohnen, Palm and Schim van der Loeff, 2010) and for radical 
innovators (Zhen, 2018).  
 
When continuous measures of innovation output are used, the typical orders of 
magnitude of the elasticities of output with respect to innovation are between 0.10 and 
0.25, indicating that a 10% increase in innovation output (sales of new products per 
employee) increases labor productivity by 1 to 2.5 % (Mohnen and Hall, 2013). The 
elasticity of productivity with respect innovation output declines when other factors like 
capital stock or human capital are controlled for. As was also mentioned for R&D, 
lower elasticities are found when the regression is in growth rates rather than levels of 
productivity. The innovation survey allows for various levels of novelty of product 
innovations by distinguishing products new to the firm and products new to the market. 
With continuous data, no major differences are found regarding the level of novelty. 
When only binary data on innovation output are available, innovation generally increases 
productivity significantly, whatever kind of innovation is considered. Peters et al. (2017) 
report that in German high-tech industries it is product innovation that increases 
productivity, in low-tech industries it is process innovation. As Jaumandreu and 
Mairesse (2017) actually argue and show, it is difficult to identify separately the effect of 
different types of innovation, partly because we know too little to instrument each type 
of innovation output by different exogenous variables, and partly because different types 
of innovation are often introduced simultaneously. 
 
On French data, Mairesse, Mohnen and Kremp (2005) have shown that the rates of 
return to R&D calculated from the CDM model are consistent with those obtained from 
the reduced form model where R&D enters the production function directly. What 
these innovation surveys have also revealed is that especially for low and medium 
technology firms, small and medium sized firms and firms in developing countries, non-
R&D is an important input in the innovation process besides formal R&D. Instead of 
relying on their own R&D, these firms buy outside technologies and invest in advanced 
manufacturing technologies, licensing and training to advance their state of knowledge 
(Santamaría, Nieto and Barge-Gil, 2009; Huang, Arundel and Hollanders, 2010). The 
CDM model has recently been generalized by Peters, Roberts, Vuong and Fryges (2017) 
in the direction of making the effect of R&D on innovation and of innovation on 
productivity stochastic. Their model allows for firms to be innovative without doing 
R&D; as a matter of fact, on German data they find that this is the case for 22% of the 
firms. Firms that do R&D are more likely to be innovative, but R&D is not a sufficient 
condition for being innovative: the probability of turning out not to be innovative is 
10% in low-tech industries and 20% in high-tech industries. The long-run rate of return 
to R&D is calculated as the relative difference in the expected firm value between firms 
that do and those that do not do any R&D. In the high-tech industries the median rate 
of return to R&D is 6.7%. In low-tech industries the corresponding figure is 2.8%. They 
also find a lot of heterogeneity between firms and thereby rejoin Baum, Lööf, Navari, 
Stephan (2017), who report that the relationship between innovation and productivity 
differs across industries. The international comparison study performed on 18 OECD 
countries also found heterogeneity across countries, types of sectors, and sizes of firms 
with generally larger effects of innovation on productivity in manufacturing than in 
services (OECD, 2009).  The positive links between innovation input, innovation output 
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and productivity are also obtained on Latin American data, but the semi-elasticity of 
productivity with respect to dichotomous measures of innovation tend to be higher in 
Latin American than in European countries, reflecting a greater productivity gap that 
could be overcome by innovation in the former countries (Crespi and Zuniga, 2012). 
 
There is mixed evidence regarding the existence of any complementarity between 
different types of innovation, meaning that the return from one type would increase in 
the presence of the other type. Ballot, Fakhfakh, Galia, Salter (2015) find some 
complementarity between product and process innovation in France and in the UK, but 
only complementarity between product (not process) and organizational innovation in 
France (not the UK). Peters et al. (2017) find no sign that the simultaneous introduction 
of product and process innovation has any additional effect in German firms, whereas 
Schmidt and Rammer (2007) conclude that product and process innovations lead to 
higher cost reductions or more novel (new-to-market) product innovations when 
combined with both organizational and marketing innovations. 
 
 

3.4 Innovation count data 
 
One of the first studies using counts of new products is by Comanor and Scherer 
(1969). They used two measures of new product counts corresponding to the notions of 
new to the market and new to the firm: the number of new chemical entities introduced 
by each pharmaceutical firm from 1955 to 1960, with each new product weighted by its 
sales during the first two calendar years following introduction, and a similar broader 
measure that includes combinations of active ingredients, new dosage forms and 
products that merely duplicate those already introduced by competing firms as well as 
new chemical entities. They found significant positive correlations between the three 
measures even after controlling for firm size.  
 
Acs and Audretsch (1988) exploit count data on announced innovations compiled by 
the U.S. Small Business Administration from listings in hundreds of trade journal. They 
report a higher correlation between innovation counts and patents than between 
innovation counts and R&D. When controlling for other determinants, they obtain an 
elasticity of innovation counts with respect to corporate R&D close to 0.5. Using the 
SPRU innovation count database, Geroski (1991) and Sterlachinni (1989) find a positive 
correlation between the number of innovations used in an industry and its productivity 
growth.8   
 

4. Conclusion and discussion 
 
Whatever the innovation indicator, there will always be the problem that part of the 
variation of productivity reflects mismeasured prices. Few micro datasets contain 
product prices. To the extent that industry deflators incorrectly measure firm-specific 

                                            
8 Sjöö (2016) examines whether there was an industrial renewal in Sweden between 1970 and 2007 in terms of 
degree of novelty, volume, firm size, concentration, and industrial origin on the basis of some 4000 innovations 
introduced in Sweden during this time period. She does not relate innovations to productivity growth.  
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price changes on the input or on the output side productivity gets over- or 
underestimated. This problem is magnified when it comes to innovation. First, prices of 
new products are hard to measure, secondly quality changes are difficult to dissociate 
from pure price changes, and third, part of revenue productivity growth can be due to 
market power instead of efficiency in the production of goods or services.  

 
Over the last 50 years, efforts have been made to collect indicators of innovation inputs 
and outputs in a systematic and standardized way. R&D surveys are conducted in almost 
all countries and innovation surveys are conducted on a regular basis in more and more 
countries. Patent applications have soared, thereby collecting useful data on inventions 
in technology classes, citations and patent renewal fees to infer the value of patents and 
to measure knowledge spillovers. With progress in digital technology, information on 
patents and other IP tools like trademarks, licenses and utility models, can be easily 
stored and made available worldwide. In the future, big data will allow the examination 
of innovation from other angles, such as consumption patterns and networks. 
 
The choice between indicators depends on the purpose of their use. In this paper we 
confined ourselves to explaining TFP growth. They could also be used to assess 
domestic and international competitiveness, employment, standard of living, 
development or inequality in the distribution of income. Policy makers tend to 
concentrate on a particular indicator for monitoring and benchmarking innovative 
capabilities, for instance the R&D over GDP ratio. This rather narrow view of 
technological capabilities neglects at least three facts: first, some industries are more 
R&D intensive than others, and a country might be specialized in low R&D-intensive 
industries; secondly, what matters is not just R&D generation but rather R&D use and a 
country may decide to buy knowledge in the technology market rather than doing R&D 
itself; and third, many digitally-based innovations are services, which do not require 
much R&D but developments of connectivity, multi-sided markets and integration of 
technologies.  
 
Even when it comes to explaining TFP growth, there is not one best indicator. As we 
have seen, every indicator has its specificities, strengths and weaknesses. Some measure 
the inputs, others measure the outputs of technological of innovation; some are easily 
available, others require special permissions; some are collected regularly, others only 
occasionally; some present themselves as panel data, others only as cross-sections. They 
may be biased towards large firms or publicly-listed firms. They may pertain to a 
particular date or to a longer period. They may reflect a verifiable transaction or they 
may represent guestimates. And the list goes on. One solution is to construct an index 
based on these various indicators. While it may do a good job in terms of monitoring 
and benchmarking, it does not exploit the full information contained in multiple 
indicators, which would lead to a better understanding of the links between them and 
the ultimate performance measure one seeks to explain. 
 
Improvements will be made in the future thanks to the ease of sharing and storing 
information. New indicators will be developed such as the tracing of the value chains for 
many goods, data on functionalities rather than services, integration of worldwide 
operations of multinational firms. As much as possible we should try to strive for 



18 
 

longitudinal data that can be merged with other data. 
 
The present state of knowledge confirms Schumpeter’s and long before him John Rae’s 
vision of innovation as driver of economic growth. Whatever innovation indicator we 
select, the evidence overwhelmingly shows that in the long run innovation is correlated 
with total factor productivity growth whether at the firm or at the aggregate level.  
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